Acta Vet. Brno 2025, 94: 111-118
https://doi.org/10.2754/avb202594020111
The effect of different concentrations of microalga Chlorella vulgaris supplementation on ruminal fermentation and blood indices in cows
References
1. I, Salari F, Licitra R, Martini M 2018: Use of microalgae in ruminant nutrition and implications on milk quality–A review. Livest Sci 214: 25-35
<https://doi.org/10.1016/j.livsci.2018.05.006>
2. A, Calsamiglia S, Stern MD 2005: Nitrogen metabolism in the rumen. J Dairy Sci 88: E9-E21
<https://doi.org/10.3168/jds.S0022-0302(05)73133-7>
3. T 2012: Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J Amer Sci 8: 655-669
4. A, Melville L, Rahman KM, Aulak P 2022: Microalgae as feed ingredients and a potential source of competitive advantage in livestock production: A review. Livest Sci 259: 104907
<https://doi.org/10.1016/j.livsci.2022.104907>
5. EW 2007: Micro-algae as a source of protein. Biotech adv 25: 207-210
<https://doi.org/10.1016/j.biotechadv.2006.11.002>
6. R, Tajima K, Kurihara M 2006: Influence of temperature and pH on fermentation pattern and methane production in the rumen simulating fermenter (RUSITEC). Asian-Australas J Anim Sci 19: 376-380
<https://doi.org/10.5713/ajas.2006.376>
7. C, Mestdagh J, Vlaeminck B, Clayton D, Fievez V 2006: Microalgae as potent rumen methane inhibitors and modifiers of rumen lipolysis and biohydrogenation of linoleic and linolenic acid. Proc. International Congress Series 1293: 184-188
<https://doi.org/10.1016/j.ics.2006.01.016>
8. C, Vlaeminck B, Dijkstra J, Issa-Zacharia A, Van Nespen T 2008: Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J Dairy Sci 91: 4714-4727
<https://doi.org/10.3168/jds.2008-1178>
9. S, Ferret A, Devant M 2002: Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J Dairy Sci 85: 574-579
<https://doi.org/10.3168/jds.S0022-0302(02)74111-8>
10. G, Russell J, Sniffen C 1987: A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation. J Dairy Sci 70: 1211-1219
<https://doi.org/10.3168/jds.S0022-0302(87)80133-9>
11. YY, Shin NH, Lee SJ, Lee YJ, Kim HS 2021: In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield. J Appl Phycol 33: 1253-1262
<https://doi.org/10.1007/s10811-020-02361-4>
12. 2009: Commission Regulation (EC) No. 152/2009 laying down the methods of sampling and analysis for the official control of feed. Off J Eur Union L 54: 1-8
13. Dehority BA 2004: Rumen Microbiology: Burk A Dehority (Ed.), Nottingham University Press, Nottingham, 372 p.
14. Dehority BA 2018: Laboratory manual for classification and morphology of rumen ciliate protozoa. CRC Press, USA, 127 p.
15. M, Vallejo L, Salem A, Salem M, Camacho L, Odongo N 2017: Effects of Schizochytrium microalgae and sunflower oil as sources of unsaturated fatty acids for the sustainable mitigation of ruminal biogases methane and carbon dioxide. J Clean Prod 168: 1389-1397
<https://doi.org/10.1016/j.jclepro.2017.09.039>
16. M, Archimède H, Sauvant D 2004: Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest Prod Sci 85: 81-97
<https://doi.org/10.1016/S0301-6226(03)00117-9>
17. J, Dvořák R 2009: Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. Acta Vet Brno 78: 627-633
<https://doi.org/10.2754/avb200978040627>
18. SS, Kata FS, Athbi AM 2020: Hypoglycemic and antioxidant effect of the ethanol extract of Chlorella vulgaris inalloxan-induced diabetes mice. Bioch Cell Arch 20: 3535-3542
19. K, Budge S, Rose M, Rupasinghe H, MacLaren L 2012: Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J Dairy Sci 95: 2797-2809
<https://doi.org/10.3168/jds.2011-4736>
20. G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH 2015: Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5: 14567
<https://doi.org/10.1038/srep14567>
21. AE, Olafadehan OA 2021: Chlorella vulgaris microalgae in ruminant nutrition: a review of the chemical composition and nutritive value. Ann Anim Sci 21: 789-806
<https://doi.org/10.2478/aoas-2020-0117>
22. J, Wallace RJ 1982: Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol 43: 1026-1033
<https://doi.org/10.1128/aem.43.5.1026-1033.1982>
23. A, Leong YK, Yen H-W, Huang C-Y, Chang J-S 2021: Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere 271: 129800
<https://doi.org/10.1016/j.chemosphere.2021.129800>
24. RA, Trenkle A, Burroughs W. 1966: Influence of rumen protozoa on volatile acid production and ration digestibility in lambs. J Anim Sci 25: 1116-1122
<https://doi.org/10.2527/jas1966.2541116x>
25. MS, Cardoso C, Lopes PA, Coelho D, Afonso C 2017: Microalgae as feed ingredients for livestock production and meat quality: A review. Livest Sci 205: 111-121
<https://doi.org/10.1016/j.livsci.2017.09.020>
26. J, Purser D 1970: Relationship between rumen ammonia levels and the microbial population and volatile fatty acid proportions in faunated and defaunated sheep. Appl Microbiol 19: 485-490
<https://doi.org/10.1128/am.19.3.485-490.1970>
27. NRC 2016: National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press, 494 p.
28. CJ, De La Fuente G, Belanche A, Ramos-Morales E, McEwan NR 2015: The role of ciliate protozoa in the rumen. Front microbiol 6: 164310
<https://doi.org/10.3389/fmicb.2015.01313>
29. Ogimoto K, Imai S 1981: Atlas of rumen microbiology. Japan Scientific Societies Press, 231 p.
30. A, Stiverson J, Yu Z 2012: Effects of quillaja and yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. J Appl Microbiol 113: 1329-1340
<https://doi.org/10.1111/j.1365-2672.2012.05440.x>
31. E, Bruneel C, Muylaert K, Foubert I 2012: Microalgae as an alternative source of omega‐3 long chain polyunsaturated fatty acids. Lipid Technol 24: 128-130
<https://doi.org/10.1002/lite.201200197>
32. PJ, Robertson J, Lewis B 1991: Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583-3597
<https://doi.org/10.3168/jds.S0022-0302(91)78551-2>
33. Van Soest PJ 1994: Nutritional ecology of the ruminant. Cornell university press, USA, 488 p.
34. KJ, Steingaß H, Rodehutscord M 2019: Variability of in vitro ruminal fermentation and nutritional value of cell‐disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy 11: 345-359
<https://doi.org/10.1111/gcbb.12539>
35. Williams AG, Coleman GS 1997: The Rumen Protozoa. In: Hobson PN, Stewart CS (Eds): The Rumen Microbial Ecosystem. Springer, Dordrecht, 740 p.
36. J, Clark J, Blaisdell F 1976: Effect of sampling location, time, and method of concentration of ammonia nitrogen in rumen fluid. J Dairy Sci 59: 459-464
<https://doi.org/10.3168/jds.S0022-0302(76)84227-0>
37. Y, Xue S, Zhao Y, Li S 2020: Effect of cassava residue substituting for crushed maize on in vitro ruminal fermentation characteristics of dairy cows at mid-lactation. Animals 10: 893
<https://doi.org/10.3390/ani10050893>

