Acta Vet. Brno 2025, 94: 137-144

https://doi.org/10.2754/avb202594020137

The effect of Wi-Fi on elastic and collagen fibres in the blood vessel wall of the chorioallantoic membrane

Katarína Holovská1, Sandra Andrašková1, Eva Petrovová1, Ján Molnár2, Tibor Vince2, Viera Almášiová1

1University of Veterinary Medicine and Pharmacy, Department of Morphological Disciplines, Košice, Slovak Republic
2Technical University, Department of Theoretical and Industrial Electrical Engineering, Faculty of Electrical Engineering and Informatics, Košice, Slovak Republic

Received April 16, 2025
Accepted July 8, 2025

References

1. Abdulameer J, Alsahlany AM 2022: Review: Electromagnetic radiation effects on the human tissues. NeuroQuantology 20: 8130-8146
2. Almášiová V, Andrašková S, Bučko M, Holovská K 2024: Effect of electromagnetic Wi-Fi radiation on the development of chicken embryo. Folia Vet 68: 60-66 <https://doi.org/10.2478/fv-2024-0028>
3. Alvarenga HG, Marti L 2014: Multifunctional roles of reticular fibroblastic cells: More than meets the eye? J Immunol Res 10: 11-15
4. Andreotti L, Bussotti A, Cammelli D, di Giovine F, Sampognaro S, Sterrantino G, Varcasia G, Arcangeli P 1985: Aortic connective tissue in ageing—A biochemical study. Angiology 63: 872-879 <https://doi.org/10.1177/000331978503601206>
5. Arribas SM, Hinek A, Gonzalez MC 2006: Elastic fibres and vascular structure in hypertension. Pharmacol Ther 111: 771-791 <https://doi.org/10.1016/j.pharmthera.2005.12.003>
6. Awal MA, Matsumoto M, Nishinakagawa H 1995: Morphometrical changes of the arterial walls of main arteries from heart to the abdomino-inguinal mammary glands of rat from virgin through pregnancy, lactation and post-weaning. J Vet Med Sci 57: 251-256 <https://doi.org/10.1292/jvms.57.251>
7. Basu P, Sen U, Tyagi N, Tyagi SC 2010: Blood flow interplays with elastin: collagen and MMP: TIMP ratios to maintain healthy vascular structure and function. Vasc Health Risk Manag 6: 215-228
8. Buttafoco L, Kolkman NG, Buijtenhuijs PE, Poot AA, Dijkstra PJ, Vermes I, Feijen J 2006: Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27: 724-734 <https://doi.org/10.1016/j.biomaterials.2005.06.024>
9. Cantor JO, Keller S, Parshley MS, Darnule TV, Darnule AT, Cerreta JM, Turino GM, Mandl I 1980: Synthesis of crosslinked elastin by an endothelial cell culture. Biochem Biophys Res Commun 95: 1381-1386 <https://doi.org/10.1016/S0006-291X(80)80050-7>
10. Chen L, Wang S, Feng Y, Zhang J, Du Y, Zhang J, Ongeval CV, Ni Y, Li Y 2021: Utilisation of chick embryo chorioallantoic membrane as a model platform for imaging-navigated biomedical research. Cells 10: 1-40
11. Cocciolone AJ, Hawes JZ, Staiculescu MC, Johnson EO, Murshed M, Wagenseil JE 2018: Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Heart Circ Physiol 315: 189-205 <https://doi.org/10.1152/ajpheart.00087.2018>
12. Dartnell LR 2011: Ionizing radiation and life. Astrobiology 11: 551-582 <https://doi.org/10.1089/ast.2010.0528>
13. Ebrahim S, Azab AE, Albasha MO, Albishti N 2016: The biological effects of electromagnetic fields on human and experimental animals. IRJNAS 3: 106-121
14. Fhayli W, Boëté Q, Harki O, Briançon-Marjollet A, Jacob MP, Faury G 2019: Rise and fall of elastic fibers from development to aging. Consequences on arterial structure-function and therapeutical perspectives. Matrix Biol 84: 41-56 <https://doi.org/10.1016/j.matbio.2019.08.005>
15. Goldberg SR, Quirk GL, Sykes VW, Kordula T, Lanning DA 2007: Altered procollagen gene expression in mid-gestational mouse excisional wounds. J Surg Res 143: 27-34 <https://doi.org/10.1016/j.jss.2007.05.013>
16. Greenwald SE 2007: Ageing of the conduit arteries. J Pathol 211: 157-172 <https://doi.org/10.1002/path.2101>
17. Heinz A 2020: Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 55: 252-273 <https://doi.org/10.1080/10409238.2020.1768208>
18. Hodis S, Zamir M 2009: Mechanical events within the arterial wall: the dynamic context for elastin fatigue. J Biomech 42: 1010-1016 <https://doi.org/10.1016/j.jbiomech.2009.02.010>
19. Hosoda Y, Kawano K, Yamasawa F, Ishii T, Shibata T, Inayama S 1984: Age-dependent changes of collagen and elastin content in human aorta and pulmonary artery. Angiology 35: 615-621 <https://doi.org/10.1177/000331978403501001>
20. Howard PS, Macarak EJ 1989: Localization of collagen types in regional segments of the fetal bovine aorta. Lab Invest 61: 548-555
21. Hungerford JE, Owens GK, Argraves WS, Little CD 1996: Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178: 375-392 <https://doi.org/10.1006/dbio.1996.0225>
22. Karipidis K, Brzozek C, Bhatt CR, Loughran S, Wood A 2021: What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment? A systematic map protocol. Environ Evid 10: 1-9 <https://doi.org/10.1186/s13750-021-00252-w>
23. Kong CH, Lin XY, Woo CC, Wong HC, Lee CN, Richards AM, Sorokin VA 2013: Characteristics of aortic wall extracellular matrix in patients with acute myocardial infarction: tissue microarray detection of collagen I, collagen III and elastin levels. Interact Cardiovasc Thorac Surg 16:11-15 <https://doi.org/10.1093/icvts/ivs421>
24. Kuloğlu HY 2022: Determination of reticular fibers in tissues fixed with sugarcane molasses. Journal of Advances in VetBio Science and Techniques. J Adv VetBio Sci Tech 7: 361-365 <https://doi.org/10.31797/vetbio.1164030>
25. Kundeková B, Máčajová M, Meta M, Čavarga I, Bilčík B 2021: Chorioallantoic membrane models of various avian species: differences and applications. Biology (Basel) 10: 1-24
26. Lillie MA, Chalmers GW, Gosline JM 1994: The effects of heating on the mechanical properties of arterial elastin. Connect Tissue Res 31: 23-35 <https://doi.org/10.3109/03008209409005632>
27. Makanya AN, Dimova I, Koller T, Styp-Rekowska B, Djonov V 2016: Dynamics of the developing chick chorioallantoic membrane assessed by stereology, allometry, immunohistochemistry and molecular analysis. PLoS One 11: 1-23 <https://doi.org/10.1371/journal.pone.0152821>
28. Maurice P, Blaise S, Gayral S, Debelle L, Laffargue M, Hornebeck W, Duca L 2013: Elastin fragmentation and atherosclerosis progression: the elastokine concept. Trends Cardiovasc Med 23: 211-221 <https://doi.org/10.1016/j.tcm.2012.12.004>
29. Merckx G, Tay H, Lo Monaco M, van Zandvoort M, De Spiegelaere W, Lambrichts I, Bronckaers A 2020: Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Eng Part B Rev 26: 519-539 <https://doi.org/10.1089/ten.teb.2020.0048>
30. Parkin JD, San Antonio JD, Persikov AV, Dagher H, Dalgleish R, Jensen ST, Jeunemaitre X, Savige J 2017: The collagen III fibril has a “flexi-rod” structure of flexible sequences interspersed with rigid bioactive domains including two with hemostatic roles. PLoS One 12: 1-24
31. Pozzi A, Wary KK, Giancotti FG, Gardner HA 1998: Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol 142: 587-594 <https://doi.org/10.1083/jcb.142.2.587>
32. Ribatti D 2016: The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 141: 70-77 <https://doi.org/10.1016/j.mod.2016.05.003>
33. Ribatti D, Tamma R, Annese T 2021: Chorioallantoic membrane vascularization. A meta-analysis. Exp Cell Res 405: 1-7 <https://doi.org/10.1016/j.yexcr.2021.112716>
34. Rhodes JM, Simons M 2007: The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med 11: 176-205 <https://doi.org/10.1111/j.1582-4934.2007.00031.x>
35. Ruckman JL, Luvalle PA, Hill KE, Giro MG, Davidson JM 1994: Phenotypic stability and variation in cells of the porcine aorta: collagen and elastin production. Matrix Biol 14: 135-145 <https://doi.org/10.1016/0945-053X(94)90003-5>
36. Shabani Z, Schuerger J, Zhu X, Tang C, Ma L, Yadav A, Liang R, Press K, Weinsheimer S, Schmidt A, Wang C, Sekhar A, Nelson J, Kim H, Su H 2024: Increased collagen I/collagen III ratio is associated with hemorrhage in brain arteriovenous malformations in human and mouse. Cells 13: 1-17
37. Sherratt MJ 2009: Tissue elasticity and the ageing elastic fibre. Age 31: 305-325 <https://doi.org/10.1007/s11357-009-9103-6>
38. Wagenseil JE, Mecham RP 2009: Vascular extracellular matrix and arterial mechanics. Physiol Rev 89: 957-989 <https://doi.org/10.1152/physrev.00041.2008>
39. Wagenseil JE, Mecham RP 2012: Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 5: 264-273 <https://doi.org/10.1007/s12265-012-9349-8>
40. Wan W, Yanagisawa H, Gleason RL Jr. 2010: Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann Biomed Eng 38: 3605-3617 <https://doi.org/10.1007/s10439-010-0114-3>
41. Wittig C, Szulcek R 2021: Extracellular matrix protein ratios in the human heart and vessels: How to distinguish pathological from physiological changes? Front Physiol 12: 1-9 <https://doi.org/10.3389/fphys.2021.708656>
42. Xu J, Shi GP 2014: Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 1842: 2106-2119 <https://doi.org/10.1016/j.bbadis.2014.07.008>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive