Acta Vet. Brno 2025, 94: 155-164
https://doi.org/10.2754/avb202594020155
Trend of the occurrence of bentazone and the concentration of selected azoles in the Czech part of the River Elbe in the years 2009–2022
References
1. M, Ozden S, Alpertunga B, Ozhan G 2014: Effects of bentazone on lipid peroxidation and antioxidant systems in human erythrocytes in vitro. Drug Chem Toxicol 37: 410-414
<https://doi.org/10.3109/01480545.2013.870193>
2. de EP, Caldas ED, Oliveira-Filho EC 2022: Pesticides in surface freshwater: a critical review. Environ Monit Assess 194: 452
<https://doi.org/10.1007/s10661-022-10005-y>
3. WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT 2011: Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water Air Soil Poll 218: 1
<https://doi.org/10.1007/s11270-010-0643-2>
4. MV, Peris A, Postigo C, Moya-Garcés A, Monllor Alcaraz LS, Rambla-Alegre M, Eljarrat E, López de Alda M 2021: Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. Environ Pollut 274: 115813
<https://doi.org/10.1016/j.envpol.2020.115813>
5. N, Lentzen-Godding A, Probst M, Schulz H, Schulz R, Liess M 2004: A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level. Chemosphere 57: 107-115
6. PM, Journey CA, Romanok KM, Breitmeyer SE, Button DT, Carlisle DM, Huffman BJ, Mahler BJ, Nowell LH, Qi SL, Smalling KL, Waite IR, Van Metre PC 2021. Multi-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams. Sci Total Environ 773: 145062
<https://doi.org/10.1016/j.scitotenv.2021.145062>
7. TFD, da Silva Souza JG, de Varvalho AFS, de Lima Assis I, Palmieri MJ, Vieira LFA, Macdissi S, Machado MRF, Murgas LDS 2018: Anxiety-associated behaviour and genotoxicity found in adult Danio rerio exposed to tebuconazole-based commercial product. Environ Toxicol Phar 62: 140-146
<https://doi.org/10.1016/j.etap.2018.06.011>
8. CISTA 2024: Usage of PPPs and OPPMs in 2009-2023 (kg, l) on agricultural land, seed treatment, storage warehouses of plant products. [online]. Brno: CISTA. In Czech Available at: https://mze.gov.cz/public/portal/mze/-a48056---dLmnAqqK/2009-2023-en-spotreba-pripravku?_linka=a583058. Last modified 7th June, 2024. Assessed April 25, 2025
9. Commission Implementing Regulation (EU) 2018/1865 non-renewal of approval of the active substance propiconazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. In: EUR-lex [legal information system]. Publications Office of the European Union, Eur-lex. Available at:https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R1865&qid=1742997884377. Last modified November 28, 2018. Assessed June 20, 2025
10. (EFSA) 2015: Conclusion on the peer review of the pesticide risk assessment of the active substance bentazone. EFSA Journal 13: 4077
11. M, Blahova J, Schovankova J, Siroka Z, Svobodova Z, Kodes V, Stepankova K, Lakdawala P 2022: Residues of selected anticonvulsive drug in surface waters of the Elbe River Basin (Czech Republic). Water 14: 4122
<https://doi.org/10.3390/w14244122>
12. E, Menegola E 2010: Are azole fungicides a teratogenic risk for human conceptus? Toxicol Lett 198: 106-111
<https://doi.org/10.1016/j.toxlet.2010.07.005>
13. K, Niemann L, Selzsam B, Haider W, Gericke C, Herzler M, Chahoud I 2008: Epoxiconazole causes changes in testicular histology and sperm production in the Japanese quail (Coturnix coturnix japonica). Environ Toxicol Chem 27: 2368-2374
<https://doi.org/10.1897/08-048.1>
14. T, Zhao Y, He J, Cheng H, Martyniuk CHJ 2022: Endocrine disruption by azole fungicides in fish: A review of the evidence. Sci Total Environ 822: 153412
<https://doi.org/10.1016/j.scitotenv.2022.153412>
15. S, Moore T, Padgett W, Murphy L, Wood Ch, Nesnow Stephen 2012: The hepatocarcinogenic conazoles: Cyproconazole, epoxiconazole, and propiconazole induce a common set of toxicological and transcriptional responses. Toxicol Sci 127: 54-65
<https://doi.org/10.1093/toxsci/kfs086>
16. SAB, van den Brandhof EJ, van der Ven LTM, Piersma AH 2011: Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies. Toxicol in Vitro 25: 745-753
<https://doi.org/10.1016/j.tiv.2011.01.005>
17. M, Wang Y, Wang D, Teng M, Yan J, Yan S, Meng Z, Li R, Zhou Z, Zhu W 2019: The effects of hexaconazole and epoxiconazole enantiomers on metabolic profile following exposure to zebrafish (Danio rerio) as well as the histopathological changes. Chemosphere 226: 520-533
<https://doi.org/10.1016/j.chemosphere.2019.03.140>
18. K, Rider CV, LeBlanc A 2001: The fungicide propiconazole interferes with embryonic development of the crustacean Dapnia magna. Environ Toxicol Chem 20: 502-509
<https://doi.org/10.1002/etc.5620200308>
19. M, Buerge IJ, Hauser A, Müller MD, Poiger T 2008: Azole fungicides: Occurrence and fate in wastewater and surface waters. Environ Sci Technol 42: 7193-7200
<https://doi.org/10.1021/es8009309>
20. M, Jadas-Hécart A, La Jeunesse I, Landry D, Payraudeau S 2017: High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci Total Environ 587-588: 75-86
<https://doi.org/10.1016/j.scitotenv.2017.02.022>
21. KA, Tzilivakis J, Warner DJ, Green A 2016: An international database for pesticide risk assessments and management. Hum Ecol Risk Assess 22: 1050-1064
<https://doi.org/10.1080/10807039.2015.1133242>
22. S, Sun Q, Wu Q, Gui W, Zhu G, Schlenk D 2019: Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio). Environ Pollut 253: 930-937
23. Ministry of Agriculture, Czech Republic 2018: National action plan for safe use of pesticides in the Czech Republic for 2018–2022. Available at: https://www.dataplan.info/img_upload/7bdb1584e3b8a53d337518d988763f8d/nap_cz_2018_2022.pdf. Last modified 2018. Accessed April 30, 2025
24. D, Fan D, Gu W, Wang Z, Chen Y, Bu H, Liu J 2020: Development of an integral strategy for non-target and target analysis of site-specific potential contaminants in surface water: A case study of Dianshan Lake, China. Chemosphere 243: 12567
25. JMM, Galhano V, Henriques I, Soares AMVM, Loureiro S 2017: Basagran® induces developmental malformations and changes the bacterial community of zebrafish embryos. Environ Pollut 221: 52-63
<https://doi.org/10.1016/j.envpol.2016.10.028>
26. EM, Tsaboula A, Vryzas Z, Jitopoulou A, Kintzikoglou K, Mapadopoulo-Mourkidou E 2018: Pesticides in the rivers and streams of two basins in norhtern Greece. Sci Total Environ 624: 723-743
<https://doi.org/10.1016/j.scitotenv.2017.12.074>
27. S, Aksha S, Nakuleshwar JD, Nidhi S, Suresh JC 2015: Review on toxicological effects of fungicides. Res J Pharm Biol Chemi Sci 6: 348-360
28. J, de la Cal A, Boleda MR 2019: Monitoring the complex occurrence of pesticides in the Llobregat basin, natural and drinking waters in Barcelona metropolitan area (Catalonia, NE Spain) by a validated multi-residue online analytical method. Sci Total Environ 692: 952-965
<https://doi.org/10.1016/j.scitotenv.2019.07.317>
29. M, Margoum C, Gouy V, Carluer N, Coquery M 2010: Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment – Effect of sampling frequency. Environ Pollut 158: 737-748
<https://doi.org/10.1016/j.envpol.2009.10.014>
30. RA, van den Brink PJ, Ruepert C, Castillo LE, Gunnarsson J S 2018: Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Environ Sci Pollut 25: 13254-13269
<https://doi.org/10.1007/s11356-016-7375-9>
31. PG, Ozer H, Kirankaya SG 2024: In vivo genotoxicity testing of bentazone herbicide in Danio rerio erythrocytes using the micronucleus and nuclear abnormality assays. Water Air Soil Pollut 235: 29
<https://doi.org/10.1007/s11270-023-06835-2>
32. S, Raine NE 2022: Fungicides and bees: a review of exposure and risk. Environ Int 165: 107311
<https://doi.org/10.1016/j.envint.2022.107311>
33. ES, Marins AT, Nunes ME, Loro VL 2023: Embryonic development effects of Basagran® herbicide in Danio rerio: a preliminary study. Bull Environ Contam Toxicol 111: 62
<https://doi.org/10.1007/s00128-023-03817-2>
34. M, Ferencik M, Svoboda M, Svobodova Z 2021: Residues of selected sulphonamides, non-steroidal anti-inflammatory drugs and analgesics-antipyretics in surface water of the Elbe river basin (Czech Republic). Vet Med-Czech 66: 208-218
<https://doi.org/10.17221/180/2020-VETMED>
35. S, Säfholm M, Brande-Lavridsen N, Larsson E, Berg C 2021: Developmental reproductive toxicity and endocrine activity of propiconazole in the Xenopus tropicalis model. Sci Total Environ 753:141940
<https://doi.org/10.1016/j.scitotenv.2020.141940>
36. C, Hass U, Axelstad M, Dalgaard M, Boberg J, Andreasen H R, Vingard AM 2007: Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol Sci 100: 464-473
<https://doi.org/10.1093/toxsci/kfm227>
37. M, Zhao W, Chen X, Wang C, Zhou L, Wang C, Xu Y 2022: Parental exposure to propiconazole at environmentally relevant concentrations induces thyroid and metabolism disruption in zebrafish (Danio rerio) offspring: An in vivo, in silico and in vitro study. Ecotox Environ Safe 242: 113865
<https://doi.org/10.1016/j.ecoenv.2022.113865>
38. M, Huang, H, Li N, Li F, Wang D, Luo Q 2019: Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China. Ecotox Environ Safe 175: 289-298
<https://doi.org/10.1016/j.ecoenv.2019.01.131>

