Acta Vet. Brno 2025, 94: 273-280
https://doi.org/10.2754/avb202594040273
Association of antioxidant administrations to udder health and milk quality in Awassi ewes
References
1. A, Hernández J, Benedito JL, Castillo C 2013: Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 7: 1374-1378
<https://doi.org/10.1017/S1751731113000396>
2. A, Hernández J, Benedito JL, Castillo C 2015: The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl) 99: 1003-1016
<https://doi.org/10.1111/jpn.12273>
3. M, Figliola L, Caroprese M Marino, R, Sevi A, Santill A 2019: Somatic cell count in sheep milk. Small Rumin Res 176: 24-30
<https://doi.org/10.1016/j.smallrumres.2019.05.013>
4. MN, Dang AK 2018: Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet World 11: 562
<https://doi.org/10.14202/vetworld.2018.562-577>
5. J, Jyotsana S 2024: Oxidative stress: a biomarker for animal health and production: A review. Indian J Anim Res 58: 1-12
6. RJ, Goselink RM, Dobbelaar P, Nielen M, Newbold JR, van Werven T 2008: The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. J Dairy Sci 91: 977-987
<https://doi.org/10.3168/jds.2007-0596>
7. P 2010: The role of oxidative stress in small ruminants’ health and production. Rev Bras Zootecn 39: 348-363
<https://doi.org/10.1590/S1516-35982010001300038>
8. Celi P, Chauhan SS 2013: Oxidative stress management in farm animals: opportunities and challenges. In: Proceedings of the 4th International Conference on Sustainable Animal Agriculture for Developing Countries (SAADC), pp. 95-109
9. AI, Mavrogianni VS, Petridis IG, Vasileiou NGC, Fthenakis GC 2015: Mastitis in sheep–The last 10 years and the future of research. Vet Microbiol 181: 136-146
<https://doi.org/10.1016/j.vetmic.2015.07.009>
10. Hogan JS, Gonzalez RN, Harmon RJ, Nickerson SC, Oliver SP, Pankey JW, Smith KL 1999: Laboratory handbook on bovine mastitis. National Mastitis Council, Madison, Wisconsin
11. E, Gündüz F, Çetin Ö 2021: Evaluation of oxidative stress and immune system parameters in milk and serum of cows with mastitis. Vet Immunol Immunopathol 234: 110200
12. S, Eşki F 2021: Pathogen isolation and antibiogram analysis in dairy cows with clinical mastitis in Adana region, Turkey. J Etlik Vet Microbiol 32: 20-26
13. PT, Sinz S, Kunz C, Liesegang A, Ortmann S, Kreuzer M, Marquardt S 2019: Transfer of total phenols from a grapeseed-supplemented diet to dairy sheep and goat milk, and effects on performance and milk quality. J Anim Sci 97: 1840-1851
<https://doi.org/10.1093/jas/skz046>
14. K, Konieczny K, Grabska J, Smulski S, Szczerbal I, Szumacher-Strabel M, Pomorska-Mól M 2021: Potential novel biomarkers for mastitis diagnosis in sheep. Animal 11: 2783
15. J, Svendsen O 2007: Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 173: 502-511
<https://doi.org/10.1016/j.tvjl.2006.06.005>
16. SG, Zilhăo R, Thorsteinsdóttir S, Carlos AR 2021: Linking oxidative stress and DNA damage to changes in the expression of extracellular matrix components. Front Genet 12: 673002
<https://doi.org/10.3389/fgene.2021.673002>
17. PI, Ramanoon SZ 2001: Mastitis of sheep and goats. Vet Clin North Am Food Anim 17: 333-358
<https://doi.org/10.1016/S0749-0720(15)30032-3>
18. CS, Andrei S 2020: The impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat’s milk: A review. Pathogens 9: 882
<https://doi.org/10.3390/pathogens9110882>
19. MJ, Wiggans GR, Bannerman DD, Thomas DL, Sanders AH, Contreras A, Moroni P, Miller RH 2007: Monitoring goat and sheep milk somatic cell counts. Small Rumin Res 68: 114-125
<https://doi.org/10.1016/j.smallrumres.2006.09.014>
20. S, Khodke M 2017: Evaluation of udder health in relation to enzymatic changes in milk of non-descript sheep of Buldhana District. IOSR-JAVS 10: 01-03
<https://doi.org/10.9790/2380-1001010103>
21. M, Cipolat-Gotet C, Bittante G, Cecchinato A, Dettori ML, Vacca GM 2018: Phenotypic and genetic relationships between indicators of the mammary gland health status and milk composition, coagulation, and curd firming in dairy sheep. J Dairy Sci 101: 3164-3175
<https://doi.org/10.3168/jds.2017-13975>
22. K, Kapusta A, Kuczyńska B 2015: The etiology of oxidative stress in the various species of animals, a review. J Sci Food Agric 95: 2179-2184
<https://doi.org/10.1002/jsfa.7015>
23. L, Dell’Anno M 2024: Novel antioxidants for animal nutrition. Antioxidants 13: 438
<https://doi.org/10.3390/antiox13040438>
24. YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN 2003: Monitoring udder health and milk quality using somatic cell counts. Vet Res 34: 579-596
<https://doi.org/10.1051/vetres:2003028>
25. A, Albenzio M, Taibi L, Dantone D, Massa S 1999: Changes of somatic cell count through lactation and their effects on nutritional, renneting and bacteriological characteristics of ewe’s milk. Adv Food Sci 21: 122-127
26. N, Upadhyay SR, Hussain K, Soodan JS, Gupta SK 2007: Role of antioxidants in udder health: a review. Intas Polivet 8: 284-295
27. M, Król J, Brodziak A 2022: Antioxidant activity of milk and dairy products. Animals 12: 245
<https://doi.org/10.3390/ani12030245>
28. J, Prpić Z, Samaržija D, Vnučec I, Konjačić M, Kelava Ugarković N 2020: Udder morphology, milk production and udder health in small ruminants. Mljekarstvo 70: 75-84
<https://doi.org/10.15567/mljekarstvo.2020.0201>
29. FL, Li XS 2015: Role of antioxidant vitamins and trace elements in mastitis in dairy cows. J Adv Vet Anim Res 2: 1-9
<https://doi.org/10.5455/javar.2015.b48>
30. M, Wang Z 2020: Role of oxidative stress in fungal growth and pathogenicity. Mycopathologia 185: 103-115
<https://doi.org/10.1007/s11046-020-00469-2>

