Acta Vet. Brno 2025, 94: 297-306
https://doi.org/10.2754/avb202594040297
Portable systems extend computer-assisted semen analysis to insemination centres and reproductive facilities in the field – a review
References
1. KO, Fontbonne A, Partyka A, Nizanski W 2023: Effect of male age on semen quality in domestic animals: potential for advanced functional and translational research? Vet Res Commun 47: 1125-1137
<https://doi.org/10.1007/s11259-023-10159-1>
2. E, Ahmad N, Naseer Z, Aleem M, Khan MS, Ashiq M, Younis M 2011: Relationship of age to body weight scrotal circumference testicular ultrasonograms and semen quality in Sahiwal bulls. Trop Anim Health Prod 43: 159-164
<https://doi.org/10.1007/s11250-010-9668-1>
3. RJ, Lambourne S, Medica AJ 2023: Predicting the outcome of thoroughbred stallion matings on the basis of dismount semen sample analyses. Reproduction 165: 281-288
4. C, Gimeno-Martos S, Miguel-Jiménez S, Santolaria P, Yániz J, Palacín I, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pé R 2019: OpenCASA: A new open-source and scalable tool for sperm quality analysis. PLoS Comput Biol 15: e1006691
<https://doi.org/10.1371/journal.pcbi.1006691>
5. Amann R, Waberski D 2014: Computer-Assisted Sperm Analysis (CASA): Capabilities and potential developments. Theriogenology 81: 5-17e3
6. I, Sevilla F, Barquero V, Valverde A 2023: The effect of extender age and bovine sexual status on the sperm kinematics. Agron Meso 34: 52597
<https://doi.org/10.15517/am.2023.52597>
7. I, Sevilla F, Molina-Montero R, Roldan ERS, Barrientos-Morales M, Silvestre MA, Valverde A 2024: Kinematic and morphometric assessment of fresh semen before during and after mating period in Brahman bulls. Animals 14:132
<https://doi.org/10.3390/ani14010132>
8. I, Sevilla F, Pichardo-Matamoros D, Salamanca-Carreńo A, Domínguez-Mancera B, Valverde A 2025: Effect of age on sperm motility kinematics and morphometrics in Brahman cattle. Acta Vet-Beograd: 75: 242-258
<https://doi.org/10.2478/acve-2025-0019>
9. V, Roldan ERS, Soler C, Yániz JL, Camacho M, Valverde A 2021a: Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals 11: 920
<https://doi.org/10.3390/ani11040920>
10. V, Roldan ERS, Soler C, Vargas-Leitón B, Sevilla F, Camacho M, Valverde A 2021b: Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology 10: 595
<https://doi.org/10.3390/biology10070595>
11. V, Soler C, Sevilla F, Calderón-Calderón J, Valverde A 2021c: A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables. Reprod Domest Anim 56: 1024-1033
<https://doi.org/10.1111/rda.13946>
12. İ 2024: Comparison of computer-assisted sperm analysis and smartphone-applied sperm analysis for evaluation of frozen–thawed bull semen. Reprod Domest Anim 59: e14695
<https://doi.org/10.1111/rda.14695>
13. M, Mohanty TK, Raina VS, Gupta AK, Khan HM, Mahapatra RK, Sarkar M 2011: Effect of age and season on semen quality parameters in Sahiwal bulls. Trop Anim Health Prod 43: 1161-1168
<https://doi.org/10.1007/s11250-011-9817-1>
14. L, Barratt CLR, Mortimer D, Agarwal A, Aitken RJ, Alvarez JG, Aneck-Hahn N, Arver S, Baldi E, Bassas L, et al. 2022a: Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology. Hum Reprod 37: 2497-2502
<https://doi.org/10.1093/humrep/deac189>
15. L, Brown JK 2022b: The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil Steril 117: 246-251
<https://doi.org/10.1016/j.fertnstert.2021.12.012>
16. D, García-Molina A, Valverde A, Caldeira C, Yániz J, Núñez de Murga M, Soler C 2018: CASA-mot technology: How results are affected by the frame rate and counting chamber. Reprod Fertil Dev 30: 810-819
<https://doi.org/10.1071/RD17551>
17. D, Vázquez R, Gómez R, Valverde A, Roldán E, García-Molina A, Soler C 2019: Combined effects of type and depth of counting chamber and rate of image frame capture on bull sperm motility and kinematics. Anim Reprod Sci 209: 106169
<https://doi.org/10.1016/j.anireprosci.2019.106169>
18. LFC 2025: Sperm motility evaluation in stallion fresh cooled and frozen semen using a portable computer-assisted sperm analysis system. Reprod Domest Anim 60: e70052
<https://doi.org/10.1111/rda.70052>
19. LFC, da Silva MC, Kolster KA 2025: Standardization of dog sperm morphology classification. Reprod Domest Anim 60: e70024
<https://doi.org/10.1111/rda.70024>
20. LFC, Silva AEDF, Rodrigues LH, Vieira FV, Deragon LAG, Kastelic JP 2002: Effects of environmental factors age and genotype on sperm production and semen quality in Bos indicus and Bos taurus AI bulls in Brazil. Anim Reprod Sci 70: 181-190
<https://doi.org/10.1016/S0378-4320(02)00009-X>
21. MLWJ, Šoštarić E, Feitsma H, Gadella BM 2012: Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci 90: 779-789
<https://doi.org/10.2527/jas.2011-4311>
22. E, Collins C, Foutouhi A, Gonzales K, Power H, Meyers S 2021: Assessment of an IPad-based sperm motility analyzer for determination of canine sperm motility. Transl Anim Sci 5: txab066
<https://doi.org/10.1093/tas/txab066>
23. T, Aurich J, Aurich C 2019: Evaluation of a portable device for assessment of motility in stallion semen. Reprod Domest Anim 54: 514-519
<https://doi.org/10.1111/rda.13390>
24. C, García-Molina A, Valverde A, Bompart D, Hassane M, Martin P, Soler C 2018: Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo Salar) parr using a CASA system. Reprod Fertil Dev 30: 897-906
<https://doi.org/10.1071/RD17466>
25. J, Sevilla F, Roldan ERS, Barquero V, Valverde A 2022: Influence of fat-soluble vitamin intramuscular supplementation on kinematic and morphometric sperm parameters of boar ejaculates. Front Vet Sci 9: 908763
<https://doi.org/10.3389/fvets.2022.908763>
26. JE, Painter CL, Adkison RW, Memon MA, Hoyt PG 1988: Semen quality characteristics of dairy goats. J Dairy Sci 71: 1638-1646
<https://doi.org/10.3168/jds.S0022-0302(88)79728-3>
27. WH, Park HJ, Park MJ, Lim MY, Park JH, Kang BJ, Park NC 2019: Validation of a smartphone-based computer-assisted sperm analysis system compared with laboratory-based manual microscopic semen analysis and computer-assisted semen analysis. Investig Clin Urol 60: 380-387
<https://doi.org/10.4111/icu.2019.60.5.380>
28. MM, Yentur S, Colakerol A, Cil G, Yazar RO, Kandirali E, Semercioz A, Muslumanoglu AY, Temiz MZ 2024: Introducing a new smartphone applied semen analyzer SpermCellTM: A cross-sectional validation study with a comparative analysis and a mini patient questionnaire on a large sample cohort. Diagnostics 14: 689
<https://doi.org/10.3390/diagnostics14070689>
29. P, Troch L, Lemahieu I, Deblende P, Daels P 2019: Validation of a portable device (iSperm®) for the assessment of stallion sperm motility and concentration. Reprod Domest Anim 54:1113-1120
<https://doi.org/10.1111/rda.13487>
30. G, Banchi P, Hassan HA, Eilers A, Lannoo J, Wydooghe E, Niżański W, Van Soom A 2022: Sperm gone smart: A portable device (iSperm®) to assess semen concentration and motility in dogs. Animals 12: 652
<https://doi.org/10.3390/ani12050652>
31. J, Behr M, Bollwein H, Beyerbach M, Waberski D 2011: Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76: 448-454
<https://doi.org/10.1016/j.theriogenology.2011.02.021>
32. J, Prosser KA, Hernandez-Medrano JH, Gentili S, Copping KJ, Macrossan PE, Perry VEA 2020: Effect of breed age season and region on sperm morphology in 11387 bulls submitted to breeding soundness evaluation in Australia. Theriogenology 142: 1-7
<https://doi.org/10.1016/j.theriogenology.2019.09.001>
33. R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A 2021: The validity and reliability of computer-aided semen analyzers in performing semen analysis: A systematic review. Transl Androl Urol 10: 3069
<https://doi.org/10.21037/tau-21-276>
34. S, Catalán J, Valverde A, Soler C, Miró J 2020: Optimization of cCASA-mot analysis of donkey sperm: Optimum frame rate and values of kinematic variables for different counting chamber and fields. Animals 10: 1993
<https://doi.org/10.3390/ani10111993>
35. J, Dervisevic E, Devendran C, Cadarso VJ, O’Bryan MK, Nosrati R, Neild A 2022: High-frequency ultrasound boosts bull and human sperm motility. Adv Sci 9: e2104362
<https://doi.org/10.1002/advs.202104362>
36. MT, Smith DJ, Kirkman-Brown JC 2018: CASA: Tracking the past and plotting the future. Reprod Fertil Dev 30: 867-874
<https://doi.org/10.1071/RD17420>
37. V, Herranz-Jusdado JG, Rozenfeld C, Pérez L, Asturiano JF 2018: Subjective and objective assessment of fish sperm motility: When the technique and technicians matter. Fish Physiol Biochem 44: 1457-1467
<https://doi.org/10.1007/s10695-018-0505-1>
38. E, Lleberia J, Costa L, Guitart M, Yeste M, Benet J, Amengual MJ, Ribas-Maynou J 2022: Decline of sperm quality over the last two decades in the south of Europe: A retrospective study in infertile patients. Biology 12: 70
<https://doi.org/10.3390/biology12010070>
39. A, Navarro N, Cerveró C, Sadeghi S, Valverde A, Roldan ERS, Bompart D, Garrido N, Soler C 2023: Effect of incubation and analysis temperatures on sperm kinematics and morphometrics during human semen analysis. Rev Int 21: 100350
40. A, Navarro N, Valverde A, Sadeghi S, Garrido N, Soler C 2023: Optimization of human semen analysis using CASA-Mot technology. Syst Biol Reprod Med 69:166-174
<https://doi.org/10.1080/19396368.2023.2170297>
41. FP, Park R, Viana AG, Fernandez-Costa C, Topper E, Kaya A, Memili E, Yates JR, Moura AA 2020: Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep 10: 14661
<https://doi.org/10.1038/s41598-020-71015-9>
42. L, Pilsova A, Pilsova Z, Zelenkova N, Tymich Hegrova P, Klusackova B, Chmelikova E, Sedmikova M, Simonik O, Postlerova P 2025: Boar sperm motility assessment using computer-assisted sperm analysis: Current practices limitations and methodological challenges. Animals 15: 305
<https://doi.org/10.3390/ani15030305>
43. B, Pieper L, Jung M, Schulze M 2023: Influence of age breed and season on the quality of boar semen stored at low-temperature. Theriogenology 208: 102-108
<https://doi.org/10.1016/j.theriogenology.2023.06.010>
44. M, Rodríguez I, Dorado J 2006: Influence of staining and sampling procedures on goat sperm morphometry using the sperm class analyzer. Theriogenology 66: 996-1003
<https://doi.org/10.1016/j.theriogenology.2006.02.039>
45. Y, Shibahara H, Obara H, Suzuki T, Takamizawa S, Yamaguchi C, Tsunoda H, Sato I 2001: Relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro. J Assist Reprod Genet 18:215-220
<https://doi.org/10.1023/A:1009420432234>
46. FB, Zalazar L, Pastore JI, Greco MB, Iniesta-Cuerda M, Garde JJ, Soler AJ, Ballarin V, Cesari A 2018: Objective evaluation of ram and buck sperm motility by using a novel sperm tracker software. Reproduction 156: 11-21
<https://doi.org/10.1530/REP-17-0755>
47. PN, Silva MCC da, Csermak-Júnior AC, Salmão-Júnior JA, Araújo GR de, Oliveira G de, Leuzinger L, Pizzutto CS, Deco-Souza T 2020: Cryptorchidism in free-living Jaguar (Panthera onca): First case report. Anim Reprod 17: e20200555
<https://doi.org/10.1590/1984-3143-ar2020-0555>
48. MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, Bormann CL, Draz MS, Petrozza JC, Shafiee H 2017: An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 9: eaai7863
<https://doi.org/10.1126/scitranslmed.aai7863>
49. C, Aykaç A, Kaya Y, Taş M 2020: The effect of modifiable lifestyle factors on semen quality. Rev Int Androl 18: 151-158
50. A, Maus M, Keller E, Kerns K 2024: Deep learning classification method for boar sperm morphology analysis andrology. 13: 1615-1625
51. KS, Kim JH, Roh JH, Kim D, Kim HM, Jo JK 2022: Ability and accuracy of the smartphone-based O’VIEW-M® sperm test: Useful tool in the era of Covid-19. PLoS One 17: e0269894.
<https://doi.org/10.1371/journal.pone.0269894>
52. RW, Kjelland ME, Vonderhaar K, Swannack TM, Moreno JF A 2011: Comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J Anim Sci 89: 383-388
<https://doi.org/10.2527/jas.2010-3056>
53. J, Sevilla F, Araya-Zúñiga I, Silvestre MA, Barrientos M, Molina-Montero R, Roldan ERS, Valverde A 2024: Evaluating the effect of semen storage and dilution rate on boar sperm quality. Acta Agric Scand Anim Sci 74: 59-71
54. A, Ptáček M, Savvulidi FG, Nagy ST, Stádník L 2024: Effects of age and litter-of-origin on cryopreserved spermatozoa in Sumava rams. Czech J Anim Sci 69: 129-138
<https://doi.org/10.17221/32/2024-CJAS>
55. A, Ramón M, García-Álvarez O, Montoro V, Soler A, Fernández-Santos MR, Roldan ERS, Pérez-Guzmán MD, Garde JJ 2015: Sperm head phenotype and male fertility in ram semen. Theriogenology 84: 1536-1541
<https://doi.org/10.1016/j.theriogenology.2015.07.038>
56. K, Huang H-W, Chen M-C, Chen Y, Cheng C-M 2017: Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci Rep 7: 46213
<https://doi.org/10.1038/srep46213>
57. AJ, Lambourne S, Aitken RJ 2023: Predicting the outcome of equine artificial inseminations using chilled semen. Animals 13: 1203
<https://doi.org/10.3390/ani13071203>
58. APG, Will KJ, Quirino M, Bustamante-Filho IC, Ulguim R da R, Bortolozzo FP 2023: Update on artificial insemination: Semen techniques and sow fertility. Mol Reprod Dev 90: 601-611
<https://doi.org/10.1002/mrd.23643>
59. Memon MA, Mickelsen WD, Goyal HO 2007: Examination of the reproductive tract and evaluation of potential breeding soundness in the buck. In: Youngquist RS, Threlfall WR (Eds): Current therapy in large animal Theriogenology. WB Saunders, Saint Louis 2007, pp 515-518
60. CR, Runcan EE, Blawut B, Coutinho Da Silva MA 2019: Technical note: The use of ISperm technology for on-farm measurement of equine sperm motility and concentration. Transl Anim 3: 1513
<https://doi.org/10.1093/tas/txz115>
61. S 2000: CASA—practical aspects. J Androl 21:515-524
<https://doi.org/10.1002/j.1939-4640.2000.tb02116.x>
62. Mortimer ST, De Jonge CJ 2018: CASA—Computer-Aided Sperm Analysis. In: Skinner MK (Ed.): Encyclopedia of Reproduction. Elsevier pp. 59-63
63. ST, Van Der Horst G, Mortimer D 2015: The future of computer-aided sperm analysis. Asian J Androl 17: 545-553
<https://doi.org/10.4103/1008-682X.154312>
64. C, Joseph A, Ezekwe M 2005: Seasonal and genotype variations in libido semen production and quality in artificial insemination boars. J Anim Vet Adv 4: 885-888
65. E, Bilo Calsin C, Enrique Zegarra O 2019: Cinética y morfometría espermática en semen congelado sexado y convencional de toros Brown Swiss (Sperm kinetics and morphometry in sexed and conventional frozen semen from Brown Swiss bulls). Revista de Investigaciones Veterinarias del Perú 30: 500-506
<https://doi.org/10.15381/rivep.v30i1.14696>
66. I, Vicente-Fiel S, Santolaria P, Yániz J 2013: Standardization of CASA sperm motility assessment in the ram. Small Rumin Res 112:128-135
<https://doi.org/10.1016/j.smallrumres.2012.12.014>
67. C, Pânzaru C, Radu-Rusu RM, Maciuc V, Florea AM, Nechifor I 2024: The influence of season and age on specific semen traits and reproductive behavior in Carpatina breed bucks. Agriculture 14: 2092
<https://doi.org/10.3390/agriculture14112092>
68. DL, Sandlow JI 2024: Sperm Morphology: Evaluating its clinical relevance in contemporary fertility practice. Reprod Med Biol 23: e12594
<https://doi.org/10.1002/rmb2.12594>
69. K, Janošíková M, Ptáček M, Savvulidi FG, Zita L 2024: In vitro and in vivo evaluation of the fertilization capacity of frozen/thawed rooster spermatozoa supplemented with different concentrations of trehalose. Animals 14: 3586
<https://doi.org/10.3390/ani14243586>
70. D, Sevilla F, Elizondo-Salazar J, Jiménez-Sánchez C, Roldan ERS, Soler C, Gacem S, Valverde A 2023: Exploration of semen quality analyzed by CASA-mot systems of Brahman bulls infected with BLV and BHV-1. Sci Rep 13: 18659
<https://doi.org/10.1038/s41598-023-45981-9>
71. A, Rigau T, Rodríguez-Gil JE 2004: Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61: 673-690
<https://doi.org/10.1016/S0093-691X(03)00248-6>
72. MV, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F 2024: The impact of mitochondrial impairments on sperm function and male fertility: A systematic review. Reprod Biol Endocrinol 22: 83
<https://doi.org/10.1186/s12958-024-01252-4>
73. T, Van Soom A, Maes D, Kruif A 2003: Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60: 1553-1568
<https://doi.org/10.1016/S0093-691X(03)00171-7>
74. LA, Roth TL 2023: Validation of the iSperm for assessing rhinoceros sperm. Theriogenology Wild 3: 100048
<https://doi.org/10.1016/j.therwi.2023.100048>
75. Rocha VP, Santos-Araújo LR, Antônio L, Miranda M, Mano E Silva B, Campos Da Silva Ę, Patrocínio C, Santos D 2021: Avaliaçăo morfológica de espermatozoides suínos em uma central de inseminaçăo artificial (Morphological evaluation of human spermatozoa in an artificial insemination center). Rev Bras Hig Sanid Anim 15
<https://doi.org/10.5935/1415.2762.20210025>
76. AL, Rijsselaere T, Beek J, Vyt P, Van Soom A, Maes D 2013: Boar seminal plasma components and their relation with semen quality. Syst Biol Reprod Med 59: 5-12
<https://doi.org/10.3109/19396368.2012.725120>
77. S, García-Molina A, Celma F, Valverde A, Fereidounfar S, Soler C 2016: Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in Human spermatozoa. Asian J Androl 18: 835-839
78. M, Pérez-Sánchez F, Tablado L, De Monserrat JJ, Soler C 1998: Computer assisted morphometric analysis of ram sperm heads: Evaluation of different fixative techniques. Theriogenology 50: 27-37
<https://doi.org/10.1016/S0093-691X(98)00110-1>
79. P, Rickard JP, Pérez-Pe R 2023: Understanding sperm quality for improved reproductive performance. Biology 12: 980
<https://doi.org/10.3390/biology12070980>
80. P, Vicente-Fiel S, Palacín I, Fantova E, Blasco ME, Silvestre MA, Yániz JL 2015: Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim Reprod Sci 163: 82-88
<https://doi.org/10.1016/j.anireprosci.2015.10.001>
81. F., Araya-Zúñiga I, Méndez-Porras A, Alfaro-Velasco J, Jiménez-Delgado E, Silvestre MA, Molina-Montero R, Roldan ERS, Valverde A 2025b: Design and implementation of a deep learning system to analyze bovine sperm morphology. Vet Sci 12: 1015
82. F, Murillo L, Araya-Zúñiga I, Silvestre MÁ, Saborío-Montero A, Vargas-Leitón B, Valverde A 2025a: Effects of age season breed and sperm counting chamber on boar semen quality variables in tropical conditions. Austral J Vet Sci 57: e5701
<https://doi.org/10.4206/ajvs.57.01>
83. F, Soler C, Araya-Zúñiga I, Barquero V, Roldan ERS, Valverde A 2023: Are there differences between methods used for the objective estimation of boar sperm concentration and motility? Animals 13: 1622
<https://doi.org/10.3390/ani13101622>
84. L, Nascimento J, Berns M, Botvinick E 2006: Computer-based tracking of single sperm. J Biomed Opt 11: 054009
<https://doi.org/10.1117/1.2357735>
85. MKF da, Borges MS, Paula RR de, Souza LFC de, Afonso FA, Alves LA, Pytilak EP, Souza MM, Crespilho AM 2022: Comparison of different methods to access bull sperm concentration: Are there options to be compared to NucleoCounter®. Braz J Dev 8: 47934-47944
<https://doi.org/10.34117/bjdv8n6-340>
86. O, Sichtar J, Krejcarkova A, Rajmon R, Stadnik L, Beran J, Dolezalova M, Biniova Z 2015: Computer assisted sperm analysis - the relationship to bull field fertility possible errors and their impact on outputs: A review. Indian J Anim Sci 85: 3-11
<https://doi.org/10.56093/ijans.v85i1.46113>
87. C, Gadea B, Soler A, Fernández-Santos M, Esteso M, Núñez J, Moreira P, Núñez M, Gutiérrez R, Sancho M, Garde JJ 2005: Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. Theriogenology 64: 1236-1243
<https://doi.org/10.1016/j.theriogenology.2005.02.018>
88. C, Picazo-Bueno J, Micó V, Valverde A, Bompart D, Blasco FJ, Alvarez JG, García-Molina A 2018: Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod Fertil Dev 30: 924-934
<https://doi.org/10.1071/RD17467>
89. C, Valverde A 2023: Semen analysis in precision farming in the 21st century. Agron Meso 34: 51957
<https://doi.org/10.15517/am.v34i2.51957>
90. C, Valverde A, Bompart D, Fereidounfar S, Sancho M, Yániz J, Garcia-Molina A, Korneenko-Zhilyaev YA 2017: New methods of semen analysis by CASA. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 52: 234-241
91. JM, Sevilla F, Silvestre MA, Araya-Zúñiga I, Roldan ERS, Saborío-Montero A, Valverde A 2024: Effect of thawing procedure and thermo-resistance test on sperm motility and kinematics patterns in two bovine breeds. Animals 14: 2768
<https://doi.org/10.3390/ani14192768>
92. A, Kandula H, Kumar J, Devi A, Shirley L, Thirumalaraju P, Kanakasabapathy MK, Shafiee H, Hart L 2022: Validation of a smartphone-based device to measure concentration motility and morphology in swine ejaculates. Transl Anim Sci 6: txac119
<https://doi.org/10.1093/tas/txac119>
93. JM, Takeo T, Nakagata N 2018: History of cryobiology with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 82: 57-63
<https://doi.org/10.1016/j.cryobiol.2018.04.008>
94. P, Kanakasabapathy MK, Bormann CL, Kandula H, Sai Pavan SK, Yarravarapu D, Shafiee H 2019: Human sperm morphology analysis using smartphone microscopy and deep learning. Fertil Steril 112: e41
<https://doi.org/10.1016/j.fertnstert.2019.07.237>
95. J, Palasz AT, Barth AD, Mapletoft RJ 2001: The use of in vitro fertilization techniques to investigate the fertilizing ability of bovine sperm with proximal cytoplasmic droplets. Anim Reprod Sci 65: 181-192
<https://doi.org/10.1016/S0378-4320(00)00231-1>
96. MJ, Pooley K, Simpson T, Newton T, Hopkisson J, Jayaprakasan K, Jayaprakasan R, Naeem A, Pridmore T 2010: Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil Steril 93: 1911-1920
<https://doi.org/10.1016/j.fertnstert.2008.12.064>
97. VF, Barrientos-Morales M, Hernández-Flores H, Rodríguez-Andrade A, Cervantes-Acosta P, Landi V, Beltran AH, Domínguez-Mancera B 2020: Breeding soundness examination and herd proficiency of local genetic groups of bulls in tropical environment conditions in Veracruz Mexico. Ital J Anim Sci 19: 840-855
<https://doi.org/10.1080/1828051X.2020.1803773>
98. M, Varea-Sánchez M, Roldan ERS 2019: Faster and more efficient swimming: Energy consumption of murine spermatozoa under sperm competition. Biol Reprod 100: 420-428
<https://doi.org/10.1093/biolre/ioy197>
99. L, Masson P, VerMilyea M, Kam M 2017: Automatic tracking and motility analysis of human sperm in time-lapse images. IEEE Trans Med Imaging 36: 792-801
<https://doi.org/10.1109/TMI.2016.2630720>
100. A, Barquero V, Soler C 2020: The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation a review. J Anim Feed Sci 29: 189-198
<https://doi.org/10.22358/jafs/127691/2020>
101. A, Castro-Morales O, Madrigal-Valverde M, Soler C 2019b: Sperm kinematics and morphometric subpopulations analysis with CASA systems: A review. Rev Biol Trop 67: 1473-1487
<https://doi.org/10.15517/rbt.v67i2SUPL.37229>
102. A, Madrigal-Valverde M 2018: Computer-assisted semen analysis systems in animal reproduction. Agron Meso 29: 469-484
<https://doi.org/10.15517/ma.v29i2.30613>
103. A, Madrigal-Valverde M, Caldeira C, Bompart D, Núñez de Murga J, Arnau S, Soler C 2019c: Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars analyzed with a CASA-mot system. Reprod Domest Anim 54: 167-175
<https://doi.org/10.1111/rda.13320>
104. A, Madrigal-Valverde M, Camacho-Calvo M, Zambrana-Jiménez A, López L 2018: Efecto de la composición racial sobre la calidad espermática de verracos (Effect of racial composition on sperm quality in boars). Agron Meso 29: 485
<https://doi.org/10.15517/ma.v29i3.32445>
105. A, Madrigal-Valverde M, Lotz J, Bompart D, Soler C 2019a: Effect of video capture time on sperm kinematic parameters in breeding boars. Livest Sci 220: 52-56
<https://doi.org/10.1016/j.livsci.2018.12.008>
106. G 2020: Computer aided sperm analysis (CASA) in domestic animals: Current status three D tracking and flagellar analysis. Anim Reprod Sci 220: 106350
<https://doi.org/10.1016/j.anireprosci.2020.106350>
107. G, Maree L, du Plessis S 2018: Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod Fertil Dev 30: 875-888
<https://doi.org/10.1071/RD17468>
108. J, Iguer-Ouada M, Onclin K 2002: Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57: 149-179
<https://doi.org/10.1016/S0093-691X(01)00664-1>
109. LG, Barquero V, Valverde A 2021: Condiciones óptimas de análisis cinético en semen fresco de toros Brahman con un sistema CASA-mot. Agron Meso 32: 920-938
<https://doi.org/10.15517/am.v32i3.42768>
110. JS, Winet H, Freund M A 1982: Comparison of subjective and objective sperm motility evaluation. J Androl 3: 184-192
<https://doi.org/10.1002/j.1939-4640.1982.tb00667.x>
111. N, Gu H, Gao Y, Li X, Yu G, Lv F, Shi C, Wang S, Song M, Zhang S 2022: Study on influencing factors of semen quality in fertile men. Front Physiol 13: 813591
<https://doi.org/10.3389/fphys.2022.813591>
112. J, Silvestre M, Santolaria P, Soler C 2018: CASA-Mot in mammals: An update. Reprod Fertil Dev 30: 799-809
<https://doi.org/10.1071/RD17432>
113. S, Rubin M, Geevarughese S, Pino JS, Rodriguez HF, Asghar W 2018: Emerging technologies for home-based semen analysis. Andrology 6: 10-19
<https://doi.org/10.1111/andr.12441>
114. M, Ilhan HO, Aydin N 2021: Multi-Model CNN Fusion for sperm morphology analysis. Comput Biol Med 137: 104790
<https://doi.org/10.1016/j.compbiomed.2021.104790>
115. C, Zhang Y, Chang Z, Li C 2024: Sperm YOLOv8E-TrackEVD: A novel approach for sperm detection and tracking. Sensors 24: 3493
<https://doi.org/10.3390/s24113493>
116. Y, Vlahos N, Wyncott D, Petrella C, Garcia J, Zacur H, Wallach EE 2004: Impact of semen characteristics on the success of intrauterine insemination. J Assist Reprod Genet 21: 143-148
<https://doi.org/10.1023/B:JARG.0000031246.76666.f6>
117. CX, Yang ZM 2000: Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures. Theriogenology 53: 1477-1488
<https://doi.org/10.1016/S0093-691X(00)00290-9>

