Acta Vet. Brno 2025, 94: 297-306

https://doi.org/10.2754/avb202594040297

Portable systems extend computer-assisted semen analysis to insemination centres and reproductive facilities in the field – a review

Kenneth Matamoros1, Francisco Sevilla1,2, Ignacio Araya-Zúñiga1,3, Arcesio Salamanca-Carreño4, Ruth Ccalta5, Alejandro Saborío-Montero6, Anthony Valverde1

1Costa Rica Institute of Technology, School of Agronomy, Research and Development Centre for Sustainable Agriculture in the Humid Tropics, Animal Reproduction Laboratory, San Carlos Campus, Alajuela, Costa Rica
2Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Alajuela, Costa Rica
3Maestría en Ciencia y Tecnología para la Sostenibilidad, Instituto Tecnológico de Costa Rica, Alajuela, Costa Rica
4Cooperative University of Colombia, Faculty of Veterinary Medicine and Animal Husbandry, Villavicencio, Colombia
5National Institute of Agrarian Innovation, Andenes Cusco Experimental Station, Cusco, Perú
6University of Costa Rica, Faculty of Agri-Food Sciences, Zootechnics School and Alfredo Volio Mata Experimental Station, Cartago, Costa Rica

Received September 17, 2025
Accepted November 28, 2025

References

1. Abah KO, Fontbonne A, Partyka A, Nizanski W 2023: Effect of male age on semen quality in domestic animals: potential for advanced functional and translational research? Vet Res Commun 47: 1125-1137 <https://doi.org/10.1007/s11259-023-10159-1>
2. Ahmad E, Ahmad N, Naseer Z, Aleem M, Khan MS, Ashiq M, Younis M 2011: Relationship of age to body weight scrotal circumference testicular ultrasonograms and semen quality in Sahiwal bulls. Trop Anim Health Prod 43: 159-164 <https://doi.org/10.1007/s11250-010-9668-1>
3. Aitken RJ, Lambourne S, Medica AJ 2023: Predicting the outcome of thoroughbred stallion matings on the basis of dismount semen sample analyses. Reproduction 165: 281-288
4. Alquézar-Baeta C, Gimeno-Martos S, Miguel-Jiménez S, Santolaria P, Yániz J, Palacín I, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pé R 2019: OpenCASA: A new open-source and scalable tool for sperm quality analysis. PLoS Comput Biol 15: e1006691 <https://doi.org/10.1371/journal.pcbi.1006691>
5. Amann R, Waberski D 2014: Computer-Assisted Sperm Analysis (CASA): Capabilities and potential developments. Theriogenology 81: 5-17e3
6. Araya-Zúñiga I, Sevilla F, Barquero V, Valverde A 2023: The effect of extender age and bovine sexual status on the sperm kinematics. Agron Meso 34: 52597 <https://doi.org/10.15517/am.2023.52597>
7. Araya-Zúñiga I, Sevilla F, Molina-Montero R, Roldan ERS, Barrientos-Morales M, Silvestre MA, Valverde A 2024: Kinematic and morphometric assessment of fresh semen before during and after mating period in Brahman bulls. Animals 14:132 <https://doi.org/10.3390/ani14010132>
8. Araya-Zúñiga I, Sevilla F, Pichardo-Matamoros D, Salamanca-Carreńo A, Domínguez-Mancera B, Valverde A 2025: Effect of age on sperm motility kinematics and morphometrics in Brahman cattle. Acta Vet-Beograd: 75: 242-258 <https://doi.org/10.2478/acve-2025-0019>
9. Barquero V, Roldan ERS, Soler C, Yániz JL, Camacho M, Valverde A 2021a: Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals 11: 920 <https://doi.org/10.3390/ani11040920>
10. Barquero V, Roldan ERS, Soler C, Vargas-Leitón B, Sevilla F, Camacho M, Valverde A 2021b: Relationship between fertility traits and kinematics in clusters of boar ejaculates. Biology 10: 595 <https://doi.org/10.3390/biology10070595>
11. Barquero V, Soler C, Sevilla F, Calderón-Calderón J, Valverde A 2021c: A Bayesian analysis of boar spermatozoa kinematics and head morphometrics and their relationship with litter size fertility variables. Reprod Domest Anim 56: 1024-1033 <https://doi.org/10.1111/rda.13946>
12. Baştan İ 2024: Comparison of computer-assisted sperm analysis and smartphone-applied sperm analysis for evaluation of frozen–thawed bull semen. Reprod Domest Anim 59: e14695 <https://doi.org/10.1111/rda.14695>
13. Bhakat M, Mohanty TK, Raina VS, Gupta AK, Khan HM, Mahapatra RK, Sarkar M 2011: Effect of age and season on semen quality parameters in Sahiwal bulls. Trop Anim Health Prod 43: 1161-1168 <https://doi.org/10.1007/s11250-011-9817-1>
14. Björndahl L, Barratt CLR, Mortimer D, Agarwal A, Aitken RJ, Alvarez JG, Aneck-Hahn N, Arver S, Baldi E, Bassas L, et al. 2022a: Standards in semen examination: publishing reproducible and reliable data based on high-quality methodology. Hum Reprod 37: 2497-2502 <https://doi.org/10.1093/humrep/deac189>
15. Björndahl L, Brown JK 2022b: The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil Steril 117: 246-251 <https://doi.org/10.1016/j.fertnstert.2021.12.012>
16. Bompart D, García-Molina A, Valverde A, Caldeira C, Yániz J, Núñez de Murga M, Soler C 2018: CASA-mot technology: How results are affected by the frame rate and counting chamber. Reprod Fertil Dev 30: 810-819 <https://doi.org/10.1071/RD17551>
17. Bompart D, Vázquez R, Gómez R, Valverde A, Roldán E, García-Molina A, Soler C 2019: Combined effects of type and depth of counting chamber and rate of image frame capture on bull sperm motility and kinematics. Anim Reprod Sci 209: 106169 <https://doi.org/10.1016/j.anireprosci.2019.106169>
18. Brito LFC 2025: Sperm motility evaluation in stallion fresh cooled and frozen semen using a portable computer-assisted sperm analysis system. Reprod Domest Anim 60: e70052 <https://doi.org/10.1111/rda.70052>
19. Brito LFC, da Silva MC, Kolster KA 2025: Standardization of dog sperm morphology classification. Reprod Domest Anim 60: e70024 <https://doi.org/10.1111/rda.70024>
20. Brito LFC, Silva AEDF, Rodrigues LH, Vieira FV, Deragon LAG, Kastelic JP 2002: Effects of environmental factors age and genotype on sperm production and semen quality in Bos indicus and Bos taurus AI bulls in Brazil. Anim Reprod Sci 70: 181-190 <https://doi.org/10.1016/S0378-4320(02)00009-X>
21. Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM 2012: Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci 90: 779-789 <https://doi.org/10.2527/jas.2011-4311>
22. Bulkeley E, Collins C, Foutouhi A, Gonzales K, Power H, Meyers S 2021: Assessment of an IPad-based sperm motility analyzer for determination of canine sperm motility. Transl Anim Sci 5: txab066 <https://doi.org/10.1093/tas/txab066>
23. Buss T, Aurich J, Aurich C 2019: Evaluation of a portable device for assessment of motility in stallion semen. Reprod Domest Anim 54: 514-519 <https://doi.org/10.1111/rda.13390>
24. Caldeira C, García-Molina A, Valverde A, Bompart D, Hassane M, Martin P, Soler C 2018: Comparison of sperm motility subpopulation structure among wild anadromous and farmed male Atlantic salmon (Salmo Salar) parr using a CASA system. Reprod Fertil Dev 30: 897-906 <https://doi.org/10.1071/RD17466>
25. Calderón-Calderón J, Sevilla F, Roldan ERS, Barquero V, Valverde A 2022: Influence of fat-soluble vitamin intramuscular supplementation on kinematic and morphometric sperm parameters of boar ejaculates. Front Vet Sci 9: 908763 <https://doi.org/10.3389/fvets.2022.908763>
26. Chandler JE, Painter CL, Adkison RW, Memon MA, Hoyt PG 1988: Semen quality characteristics of dairy goats. J Dairy Sci 71: 1638-1646 <https://doi.org/10.3168/jds.S0022-0302(88)79728-3>
27. Cheon WH, Park HJ, Park MJ, Lim MY, Park JH, Kang BJ, Park NC 2019: Validation of a smartphone-based computer-assisted sperm analysis system compared with laboratory-based manual microscopic semen analysis and computer-assisted semen analysis. Investig Clin Urol 60: 380-387 <https://doi.org/10.4111/icu.2019.60.5.380>
28. Dincer MM, Yentur S, Colakerol A, Cil G, Yazar RO, Kandirali E, Semercioz A, Muslumanoglu AY, Temiz MZ 2024: Introducing a new smartphone applied semen analyzer SpermCellTM: A cross-sectional validation study with a comparative analysis and a mini patient questionnaire on a large sample cohort. Diagnostics 14: 689 <https://doi.org/10.3390/diagnostics14070689>
29. Dini P, Troch L, Lemahieu I, Deblende P, Daels P 2019: Validation of a portable device (iSperm®) for the assessment of stallion sperm motility and concentration. Reprod Domest Anim 54:1113-1120 <https://doi.org/10.1111/rda.13487>
30. Domain G, Banchi P, Hassan HA, Eilers A, Lannoo J, Wydooghe E, Niżański W, Van Soom A 2022: Sperm gone smart: A portable device (iSperm®) to assess semen concentration and motility in dogs. Animals 12: 652 <https://doi.org/10.3390/ani12050652>
31. Ehlers J, Behr M, Bollwein H, Beyerbach M, Waberski D 2011: Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76: 448-454 <https://doi.org/10.1016/j.theriogenology.2011.02.021>
32. Felton-Taylor J, Prosser KA, Hernandez-Medrano JH, Gentili S, Copping KJ, Macrossan PE, Perry VEA 2020: Effect of breed age season and region on sperm morphology in 11387 bulls submitted to breeding soundness evaluation in Australia. Theriogenology 142: 1-7 <https://doi.org/10.1016/j.theriogenology.2019.09.001>
33. Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A 2021: The validity and reliability of computer-aided semen analyzers in performing semen analysis: A systematic review. Transl Androl Urol 10: 3069 <https://doi.org/10.21037/tau-21-276>
34. Gacem S, Catalán J, Valverde A, Soler C, Miró J 2020: Optimization of cCASA-mot analysis of donkey sperm: Optimum frame rate and values of kinematic variables for different counting chamber and fields. Animals 10: 1993 <https://doi.org/10.3390/ani10111993>
35. Gai J, Dervisevic E, Devendran C, Cadarso VJ, O’Bryan MK, Nosrati R, Neild A 2022: High-frequency ultrasound boosts bull and human sperm motility. Adv Sci 9: e2104362 <https://doi.org/10.1002/advs.202104362>
36. Gallagher MT, Smith DJ, Kirkman-Brown JC 2018: CASA: Tracking the past and plotting the future. Reprod Fertil Dev 30: 867-874 <https://doi.org/10.1071/RD17420>
37. Gallego V, Herranz-Jusdado JG, Rozenfeld C, Pérez L, Asturiano JF 2018: Subjective and objective assessment of fish sperm motility: When the technique and technicians matter. Fish Physiol Biochem 44: 1457-1467 <https://doi.org/10.1007/s10695-018-0505-1>
38. Garcia-Grau E, Lleberia J, Costa L, Guitart M, Yeste M, Benet J, Amengual MJ, Ribas-Maynou J 2022: Decline of sperm quality over the last two decades in the south of Europe: A retrospective study in infertile patients. Biology 12: 70 <https://doi.org/10.3390/biology12010070>
39. García-Molina A, Navarro N, Cerveró C, Sadeghi S, Valverde A, Roldan ERS, Bompart D, Garrido N, Soler C 2023: Effect of incubation and analysis temperatures on sperm kinematics and morphometrics during human semen analysis. Rev Int 21: 100350
40. García-Molina A, Navarro N, Valverde A, Sadeghi S, Garrido N, Soler C 2023: Optimization of human semen analysis using CASA-Mot technology. Syst Biol Reprod Med 69:166-174 <https://doi.org/10.1080/19396368.2023.2170297>
41. Gomes FP, Park R, Viana AG, Fernandez-Costa C, Topper E, Kaya A, Memili E, Yates JR, Moura AA 2020: Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep 10: 14661 <https://doi.org/10.1038/s41598-020-71015-9>
42. Hackerova L, Pilsova A, Pilsova Z, Zelenkova N, Tymich Hegrova P, Klusackova B, Chmelikova E, Sedmikova M, Simonik O, Postlerova P 2025: Boar sperm motility assessment using computer-assisted sperm analysis: Current practices limitations and methodological challenges. Animals 15: 305 <https://doi.org/10.3390/ani15030305>
43. Hensel B, Pieper L, Jung M, Schulze M 2023: Influence of age breed and season on the quality of boar semen stored at low-temperature. Theriogenology 208: 102-108 <https://doi.org/10.1016/j.theriogenology.2023.06.010>
44. Hidalgo M, Rodríguez I, Dorado J 2006: Influence of staining and sampling procedures on goat sperm morphometry using the sperm class analyzer. Theriogenology 66: 996-1003 <https://doi.org/10.1016/j.theriogenology.2006.02.039>
45. Hirano Y, Shibahara H, Obara H, Suzuki T, Takamizawa S, Yamaguchi C, Tsunoda H, Sato I 2001: Relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro. J Assist Reprod Genet 18:215-220 <https://doi.org/10.1023/A:1009420432234>
46. Imbachí FB, Zalazar L, Pastore JI, Greco MB, Iniesta-Cuerda M, Garde JJ, Soler AJ, Ballarin V, Cesari A 2018: Objective evaluation of ram and buck sperm motility by using a novel sperm tracker software. Reproduction 156: 11-21 <https://doi.org/10.1530/REP-17-0755>
47. Jorge-Neto PN, Silva MCC da, Csermak-Júnior AC, Salmão-Júnior JA, Araújo GR de, Oliveira G de, Leuzinger L, Pizzutto CS, Deco-Souza T 2020: Cryptorchidism in free-living Jaguar (Panthera onca): First case report. Anim Reprod 17: e20200555 <https://doi.org/10.1590/1984-3143-ar2020-0555>
48. Kanakasabapathy MK, Sadasivam M, Singh A, Preston C, Thirumalaraju P, Venkataraman M, Bormann CL, Draz MS, Petrozza JC, Shafiee H 2017: An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci Transl Med 9: eaai7863 <https://doi.org/10.1126/scitranslmed.aai7863>
49. Kaya C, Aykaç A, Kaya Y, Taş M 2020: The effect of modifiable lifestyle factors on semen quality. Rev Int Androl 18: 151-158
50. Keller A, Maus M, Keller E, Kerns K 2024: Deep learning classification method for boar sperm morphology analysis andrology. 13: 1615-1625
51. Kim KS, Kim JH, Roh JH, Kim D, Kim HM, Jo JK 2022: Ability and accuracy of the smartphone-based O’VIEW-M® sperm test: Useful tool in the era of Covid-19. PLoS One 17: e0269894. <https://doi.org/10.1371/journal.pone.0269894>
52. Lenz RW, Kjelland ME, Vonderhaar K, Swannack TM, Moreno JF A 2011: Comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J Anim Sci 89: 383-388 <https://doi.org/10.2527/jas.2010-3056>
53. León J, Sevilla F, Araya-Zúñiga I, Silvestre MA, Barrientos M, Molina-Montero R, Roldan ERS, Valverde A 2024: Evaluating the effect of semen storage and dilution rate on boar sperm quality. Acta Agric Scand Anim Sci 74: 59-71
54. Málková A, Ptáček M, Savvulidi FG, Nagy ST, Stádník L 2024: Effects of age and litter-of-origin on cryopreserved spermatozoa in Sumava rams. Czech J Anim Sci 69: 129-138 <https://doi.org/10.17221/32/2024-CJAS>
55. Maroto-Morales A, Ramón M, García-Álvarez O, Montoro V, Soler A, Fernández-Santos MR, Roldan ERS, Pérez-Guzmán MD, Garde JJ 2015: Sperm head phenotype and male fertility in ram semen. Theriogenology 84: 1536-1541 <https://doi.org/10.1016/j.theriogenology.2015.07.038>
56. Matsuura K, Huang H-W, Chen M-C, Chen Y, Cheng C-M 2017: Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci Rep 7: 46213 <https://doi.org/10.1038/srep46213>
57. Medica AJ, Lambourne S, Aitken RJ 2023: Predicting the outcome of equine artificial inseminations using chilled semen. Animals 13: 1203 <https://doi.org/10.3390/ani13071203>
58. Mellagi APG, Will KJ, Quirino M, Bustamante-Filho IC, Ulguim R da R, Bortolozzo FP 2023: Update on artificial insemination: Semen techniques and sow fertility. Mol Reprod Dev 90: 601-611 <https://doi.org/10.1002/mrd.23643>
59. Memon MA, Mickelsen WD, Goyal HO 2007: Examination of the reproductive tract and evaluation of potential breeding soundness in the buck. In: Youngquist RS, Threlfall WR (Eds): Current therapy in large animal Theriogenology. WB Saunders, Saint Louis 2007, pp 515-518
60. Moraes CR, Runcan EE, Blawut B, Coutinho Da Silva MA 2019: Technical note: The use of ISperm technology for on-farm measurement of equine sperm motility and concentration. Transl Anim 3: 1513 <https://doi.org/10.1093/tas/txz115>
61. Mortimer S 2000: CASA—practical aspects. J Androl 21:515-524 <https://doi.org/10.1002/j.1939-4640.2000.tb02116.x>
62. Mortimer ST, De Jonge CJ 2018: CASA—Computer-Aided Sperm Analysis. In: Skinner MK (Ed.): Encyclopedia of Reproduction. Elsevier pp. 59-63
63. Mortimer ST, Van Der Horst G, Mortimer D 2015: The future of computer-aided sperm analysis. Asian J Androl 17: 545-553 <https://doi.org/10.4103/1008-682X.154312>
64. Okere C, Joseph A, Ezekwe M 2005: Seasonal and genotype variations in libido semen production and quality in artificial insemination boars. J Anim Vet Adv 4: 885-888
65. Ormachea E, Bilo Calsin C, Enrique Zegarra O 2019: Cinética y morfometría espermática en semen congelado sexado y convencional de toros Brown Swiss (Sperm kinetics and morphometry in sexed and conventional frozen semen from Brown Swiss bulls). Revista de Investigaciones Veterinarias del Perú 30: 500-506 <https://doi.org/10.15381/rivep.v30i1.14696>
66. Palacín I, Vicente-Fiel S, Santolaria P, Yániz J 2013: Standardization of CASA sperm motility assessment in the ram. Small Rumin Res 112:128-135 <https://doi.org/10.1016/j.smallrumres.2012.12.014>
67. Pascal C, Pânzaru C, Radu-Rusu RM, Maciuc V, Florea AM, Nechifor I 2024: The influence of season and age on specific semen traits and reproductive behavior in Carpatina breed bucks. Agriculture 14: 2092 <https://doi.org/10.3390/agriculture14112092>
68. Pelzman DL, Sandlow JI 2024: Sperm Morphology: Evaluating its clinical relevance in contemporary fertility practice. Reprod Med Biol 23: e12594 <https://doi.org/10.1002/rmb2.12594>
69. Petričáková K, Janošíková M, Ptáček M, Savvulidi FG, Zita L 2024: In vitro and in vivo evaluation of the fertilization capacity of frozen/thawed rooster spermatozoa supplemented with different concentrations of trehalose. Animals 14: 3586 <https://doi.org/10.3390/ani14243586>
70. Pichardo-Matamoros D, Sevilla F, Elizondo-Salazar J, Jiménez-Sánchez C, Roldan ERS, Soler C, Gacem S, Valverde A 2023: Exploration of semen quality analyzed by CASA-mot systems of Brahman bulls infected with BLV and BHV-1. Sci Rep 13: 18659 <https://doi.org/10.1038/s41598-023-45981-9>
71. Quintero-Moreno A, Rigau T, Rodríguez-Gil JE 2004: Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61: 673-690 <https://doi.org/10.1016/S0093-691X(03)00248-6>
72. Raad MV, Firouzabadi AM, Tofighi Niaki M, Henkel R, Fesahat F 2024: The impact of mitochondrial impairments on sperm function and male fertility: A systematic review. Reprod Biol Endocrinol 22: 83 <https://doi.org/10.1186/s12958-024-01252-4>
73. Rijsselaere T, Van Soom A, Maes D, Kruif A 2003: Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 60: 1553-1568 <https://doi.org/10.1016/S0093-691X(03)00171-7>
74. Rispoli LA, Roth TL 2023: Validation of the iSperm for assessing rhinoceros sperm. Theriogenology Wild 3: 100048 <https://doi.org/10.1016/j.therwi.2023.100048>
75. Rocha VP, Santos-Araújo LR, Antônio L, Miranda M, Mano E Silva B, Campos Da Silva Ę, Patrocínio C, Santos D 2021: Avaliaçăo morfológica de espermatozoides suínos em uma central de inseminaçăo artificial (Morphological evaluation of human spermatozoa in an artificial insemination center). Rev Bras Hig Sanid Anim 15 <https://doi.org/10.5935/1415.2762.20210025>
76. Rodríguez AL, Rijsselaere T, Beek J, Vyt P, Van Soom A, Maes D 2013: Boar seminal plasma components and their relation with semen quality. Syst Biol Reprod Med 59: 5-12 <https://doi.org/10.3109/19396368.2012.725120>
77. Sadeghi S, García-Molina A, Celma F, Valverde A, Fereidounfar S, Soler C 2016: Morphometric comparison by the ISAS® CASA-DNAf system of two techniques for the evaluation of DNA fragmentation in Human spermatozoa. Asian J Androl 18: 835-839
78. Sancho M, Pérez-Sánchez F, Tablado L, De Monserrat JJ, Soler C 1998: Computer assisted morphometric analysis of ram sperm heads: Evaluation of different fixative techniques. Theriogenology 50: 27-37 <https://doi.org/10.1016/S0093-691X(98)00110-1>
79. Santolaria P, Rickard JP, Pérez-Pe R 2023: Understanding sperm quality for improved reproductive performance. Biology 12: 980 <https://doi.org/10.3390/biology12070980>
80. Santolaria P, Vicente-Fiel S, Palacín I, Fantova E, Blasco ME, Silvestre MA, Yániz JL 2015: Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim Reprod Sci 163: 82-88 <https://doi.org/10.1016/j.anireprosci.2015.10.001>
81. Sevilla, F., Araya-Zúñiga I, Méndez-Porras A, Alfaro-Velasco J, Jiménez-Delgado E, Silvestre MA, Molina-Montero R, Roldan ERS, Valverde A 2025b: Design and implementation of a deep learning system to analyze bovine sperm morphology. Vet Sci 12: 1015
82. Sevilla F, Murillo L, Araya-Zúñiga I, Silvestre MÁ, Saborío-Montero A, Vargas-Leitón B, Valverde A 2025a: Effects of age season breed and sperm counting chamber on boar semen quality variables in tropical conditions. Austral J Vet Sci 57: e5701 <https://doi.org/10.4206/ajvs.57.01>
83. Sevilla F, Soler C, Araya-Zúñiga I, Barquero V, Roldan ERS, Valverde A 2023: Are there differences between methods used for the objective estimation of boar sperm concentration and motility? Animals 13: 1622 <https://doi.org/10.3390/ani13101622>
84. Shi L, Nascimento J, Berns M, Botvinick E 2006: Computer-based tracking of single sperm. J Biomed Opt 11: 054009 <https://doi.org/10.1117/1.2357735>
85. Silva MKF da, Borges MS, Paula RR de, Souza LFC de, Afonso FA, Alves LA, Pytilak EP, Souza MM, Crespilho AM 2022: Comparison of different methods to access bull sperm concentration: Are there options to be compared to NucleoCounter®. Braz J Dev 8: 47934-47944 <https://doi.org/10.34117/bjdv8n6-340>
86. Simonik O, Sichtar J, Krejcarkova A, Rajmon R, Stadnik L, Beran J, Dolezalova M, Biniova Z 2015: Computer assisted sperm analysis - the relationship to bull field fertility possible errors and their impact on outputs: A review. Indian J Anim Sci 85: 3-11 <https://doi.org/10.56093/ijans.v85i1.46113>
87. Soler C, Gadea B, Soler A, Fernández-Santos M, Esteso M, Núñez J, Moreira P, Núñez M, Gutiérrez R, Sancho M, Garde JJ 2005: Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. Theriogenology 64: 1236-1243 <https://doi.org/10.1016/j.theriogenology.2005.02.018>
88. Soler C, Picazo-Bueno J, Micó V, Valverde A, Bompart D, Blasco FJ, Alvarez JG, García-Molina A 2018: Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod Fertil Dev 30: 924-934 <https://doi.org/10.1071/RD17467>
89. Soler C, Valverde A 2023: Semen analysis in precision farming in the 21st century. Agron Meso 34: 51957 <https://doi.org/10.15517/am.v34i2.51957>
90. Soler C, Valverde A, Bompart D, Fereidounfar S, Sancho M, Yániz J, Garcia-Molina A, Korneenko-Zhilyaev YA 2017: New methods of semen analysis by CASA. Sel’skokhozyaistvennaya Biologiya (Agricultural Biology) 52: 234-241
91. Solís JM, Sevilla F, Silvestre MA, Araya-Zúñiga I, Roldan ERS, Saborío-Montero A, Valverde A 2024: Effect of thawing procedure and thermo-resistance test on sperm motility and kinematics patterns in two bovine breeds. Animals 14: 2768 <https://doi.org/10.3390/ani14192768>
92. Suárez-Trujillo A, Kandula H, Kumar J, Devi A, Shirley L, Thirumalaraju P, Kanakasabapathy MK, Shafiee H, Hart L 2022: Validation of a smartphone-based device to measure concentration motility and morphology in swine ejaculates. Transl Anim Sci 6: txac119 <https://doi.org/10.1093/tas/txac119>
93. Sztein JM, Takeo T, Nakagata N 2018: History of cryobiology with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 82: 57-63 <https://doi.org/10.1016/j.cryobiol.2018.04.008>
94. Thirumalaraju P, Kanakasabapathy MK, Bormann CL, Kandula H, Sai Pavan SK, Yarravarapu D, Shafiee H 2019: Human sperm morphology analysis using smartphone microscopy and deep learning. Fertil Steril 112: e41 <https://doi.org/10.1016/j.fertnstert.2019.07.237>
95. Thundathil J, Palasz AT, Barth AD, Mapletoft RJ 2001: The use of in vitro fertilization techniques to investigate the fertilizing ability of bovine sperm with proximal cytoplasmic droplets. Anim Reprod Sci 65: 181-192 <https://doi.org/10.1016/S0378-4320(00)00231-1>
96. Tomlinson MJ, Pooley K, Simpson T, Newton T, Hopkisson J, Jayaprakasan K, Jayaprakasan R, Naeem A, Pridmore T 2010: Validation of a novel computer-assisted sperm analysis (CASA) system using multitarget-tracking algorithms. Fertil Steril 93: 1911-1920 <https://doi.org/10.1016/j.fertnstert.2008.12.064>
97. Torres-Aburto VF, Barrientos-Morales M, Hernández-Flores H, Rodríguez-Andrade A, Cervantes-Acosta P, Landi V, Beltran AH, Domínguez-Mancera B 2020: Breeding soundness examination and herd proficiency of local genetic groups of bulls in tropical environment conditions in Veracruz Mexico. Ital J Anim Sci 19: 840-855 <https://doi.org/10.1080/1828051X.2020.1803773>
98. Tourmente M, Varea-Sánchez M, Roldan ERS 2019: Faster and more efficient swimming: Energy consumption of murine spermatozoa under sperm competition. Biol Reprod 100: 420-428 <https://doi.org/10.1093/biolre/ioy197>
99. Urbano L, Masson P, VerMilyea M, Kam M 2017: Automatic tracking and motility analysis of human sperm in time-lapse images. IEEE Trans Med Imaging 36: 792-801 <https://doi.org/10.1109/TMI.2016.2630720>
100. Valverde A, Barquero V, Soler C 2020: The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation a review. J Anim Feed Sci 29: 189-198 <https://doi.org/10.22358/jafs/127691/2020>
101. Valverde A, Castro-Morales O, Madrigal-Valverde M, Soler C 2019b: Sperm kinematics and morphometric subpopulations analysis with CASA systems: A review. Rev Biol Trop 67: 1473-1487 <https://doi.org/10.15517/rbt.v67i2SUPL.37229>
102. Valverde A, Madrigal-Valverde M 2018: Computer-assisted semen analysis systems in animal reproduction. Agron Meso 29: 469-484 <https://doi.org/10.15517/ma.v29i2.30613>
103. Valverde A, Madrigal-Valverde M, Caldeira C, Bompart D, Núñez de Murga J, Arnau S, Soler C 2019c: Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars analyzed with a CASA-mot system. Reprod Domest Anim 54: 167-175 <https://doi.org/10.1111/rda.13320>
104. Valverde A, Madrigal-Valverde M, Camacho-Calvo M, Zambrana-Jiménez A, López L 2018: Efecto de la composición racial sobre la calidad espermática de verracos (Effect of racial composition on sperm quality in boars). Agron Meso 29: 485 <https://doi.org/10.15517/ma.v29i3.32445>
105. Valverde A, Madrigal-Valverde M, Lotz J, Bompart D, Soler C 2019a: Effect of video capture time on sperm kinematic parameters in breeding boars. Livest Sci 220: 52-56 <https://doi.org/10.1016/j.livsci.2018.12.008>
106. van der Horst G 2020: Computer aided sperm analysis (CASA) in domestic animals: Current status three D tracking and flagellar analysis. Anim Reprod Sci 220: 106350 <https://doi.org/10.1016/j.anireprosci.2020.106350>
107. van der Horst G, Maree L, du Plessis S 2018: Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod Fertil Dev 30: 875-888 <https://doi.org/10.1071/RD17468>
108. Verstegen J, Iguer-Ouada M, Onclin K 2002: Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57: 149-179 <https://doi.org/10.1016/S0093-691X(01)00664-1>
109. Víquez LG, Barquero V, Valverde A 2021: Condiciones óptimas de análisis cinético en semen fresco de toros Brahman con un sistema CASA-mot. Agron Meso 32: 920-938 <https://doi.org/10.15517/am.v32i3.42768>
110. Walker JS, Winet H, Freund M A 1982: Comparison of subjective and objective sperm motility evaluation. J Androl 3: 184-192 <https://doi.org/10.1002/j.1939-4640.1982.tb00667.x>
111. Wang N, Gu H, Gao Y, Li X, Yu G, Lv F, Shi C, Wang S, Song M, Zhang S 2022: Study on influencing factors of semen quality in fertile men. Front Physiol 13: 813591 <https://doi.org/10.3389/fphys.2022.813591>
112. Yániz J, Silvestre M, Santolaria P, Soler C 2018: CASA-Mot in mammals: An update. Reprod Fertil Dev 30: 799-809 <https://doi.org/10.1071/RD17432>
113. Yu S, Rubin M, Geevarughese S, Pino JS, Rodriguez HF, Asghar W 2018: Emerging technologies for home-based semen analysis. Andrology 6: 10-19 <https://doi.org/10.1111/andr.12441>
114. Yüzkat M, Ilhan HO, Aydin N 2021: Multi-Model CNN Fusion for sperm morphology analysis. Comput Biol Med 137: 104790 <https://doi.org/10.1016/j.compbiomed.2021.104790>
115. Zhang C, Zhang Y, Chang Z, Li C 2024: Sperm YOLOv8E-TrackEVD: A novel approach for sperm detection and tracking. Sensors 24: 3493 <https://doi.org/10.3390/s24113493>
116. Zhao Y, Vlahos N, Wyncott D, Petrella C, Garcia J, Zacur H, Wallach EE 2004: Impact of semen characteristics on the success of intrauterine insemination. J Assist Reprod Genet 21: 143-148 <https://doi.org/10.1023/B:JARG.0000031246.76666.f6>
117. Zou CX, Yang ZM 2000: Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures. Theriogenology 53: 1477-1488 <https://doi.org/10.1016/S0093-691X(00)00290-9>
front cover
  • ISSN 0001-7213 (printed)
  • ISSN 1801-7576 (electronic)

Current issue

Archive