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Abstract
Fumonisin-producing fungal species, Fusarium verticillioides, culture was mixed in the diets 

of 6 piglets for 9 days (Fumonisin B1 [FB1] intake of 17 mg/kg) to investigate whether there is 
any potential alteration in the caecal bacterial communities between the experimental (with 
F. verticillioides) and control groups (without F. verticillioides). Plate count agar culturing 
technique was applied to measure the amount of aerobic and anaerobic bacteria, Escherichia coli, 
coliforms, Lactobacillus spp. and Clostridium perfringens. A significant difference was observed 
between the control and experimental group only in the case of aerobic bacteria on Day 4, 
8.60 ± 0.22 compared to 8.06 ± 0.20 (P < 0.05), respectively. Quantitative polymerase chain 
reaction (qPCR) was performed to estimate the DNA copy number of total bacteria, Bacteroides 
and Prevotella spp., Clostridium spp., E. coli, Enterobacteriales, Firmicutes and Lactobacillus spp. 
Significant differences were observed between the control and experimental group regarding total 
bacteria on Day 2 and Day 6, Firmicutes on Day 2 and E. coli and Enterobacteriales on Day 4. 
Regarding the entire feeding time, no significant difference between the two groups was found in 
all species of investigated bacteria by the culturing technique and qPCR after an 8-day exposure. 
The present research contributes to the understanding of how microbiota responds to the FB1 load.

Fumonisin B1, caecal, culturing, qPCR

Fumonisins are a group of mycotoxins produced by several Fusarium species mostly by 
Fusarium proliferatum and Fusarium verticillioides (former name Fusarium moniliforme) 
and were first isolated by Gelderblom et al. (1988). Fumonisin B1 (FB1) is the most 
frequently occurring fumonisin, representing about 60% of total fumonisins (Voss 
et al. 2011). There is a significant structural similarity between the fumonisins and the 
sphingoid bases sphinganine (Sa) and sphingosine (So). The disruption of sphingolipid 
metabolism plays an important role in the initiation of a cascade of events which result 
in the disturbance of various cellular processes, such as the cell membrane function, cell 
growth, cell differentiation, cell morphology, cell injury and apoptosis; observed both 
in vitro and in vivo, all of which contribute to the toxicity and carcinogenicity of FB1 (Wan 
et al. 2013). Therefore, fumonisins induce harmful effects on human and animal health 
(IARC 1993; Marasas 1995; Haschek et al. 2001; Voss et al. 2007). 

Pigs are a species highly sensitive to FB1; the lowest observed adverse effect level 
(LOAEL) of fumonisin is 200 µg/kg body weight (b.w.) per day (EFSA 2005). Pigs fed 
fumonisin for at least 93 days developed nodular hyperplasia of the liver and pulmonary 
vasculature was a target of chronic exposure to fumonisin as reported by Casteel et al. 
(1994). Fumonisin-treated pigs (20 mg FB1/kg b.w. daily) had lower cardiac outputs 
and heart rates than control pigs after 3 days (Constable et al. 2000). Fumonisin B1 
(5 mg FB1 /kg b.w.) had toxicokinetics and toxicological effects on weaned piglets (Dilkin 
et al. 2010). Cortinovis et al. (2014) demonstrated that FB1 had inhibitory effects on 
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porcine granulosa cell proliferation. European Union’s guidance value for both FB1 and 
FB2 is 5 mg/kg per pig (Commission Recommendation 2006/576/EC). 

Though many studies on the effect of fumonisins on pigs’ health have been conducted, 
the role of fumonisin bioactivities in the gastrointestinal tract of pigs and especially the 
influence of fumonisin on intestinal microbiota is not fully understood. A few reports 
determined the impact of fumonisin on certain gut bacterial species such as E. coli and 
Salmonella (Oswald et al. 2003; Devriendt et al. 2010; Burel et al. 2013; Antonissen 
et al. 2015). In our previous in vitro study, alteration of bacterial communities in the pig 
caecum was not observed (Dang et al. 2017). The aim of this study was to investigate the 
caecal bacteria in different groups of pigs in in vivo conditions.

Materials and Methods
Experimental animals and design

The experimental protocol was authorized by the Food Chain Safety and Animal Health Directorate of the 
Somogy County Agricultural Office, under permission number XV-I-31/1509-5/2012.

Twelve piglets of the same genotype (9–11 kg per one) were divided into two groups: an experimental group 
(n = 6) and a control group (n = 6) which would be administered feed with and without F. verticillioides, respectively. 
The temperature and drinking water were set and provided according to the needs of the piglets. A T-cannula was 
implanted into the caecum, after 7 days of adaptation, following description of Tossenberger et al. (2000), in order 
to collect the caecal chyme for determination of the effect of FB1 on the microbiota of the caecum. After 10 days of a 
regeneration period, a F. verticillioides fungal culture was mixed into the ration of the experimental animals, so as to 
provide a daily FB1 intake of 17 mg/kg of feed. The duration of the treatment was nine days.

Sampling and processing
During the dietary exposure to F. verticillioides (nine days), samples of caecal contents (from 5 to 10 g per 

sample) were taken on days 0, 2, 4, 6 and 8 through the T-cannula and transferred into sterile tubes which were 
prepared for microbial culturing. Approximately 1g of sample was subsequently homogenised with 9 ml of 
peptone salt solution. Then a 10-fold series dilution was conducted from 10-1 to 10-8. Samples from all tubes were 
stored in deep freezer (-86 °C) for qPCR confirmation.

Media and enumeration methods
The plate count technique on selected media was applied for determining the number of bacteria. An aliquot 

(100 µl) from all the diluted series was pipetted and added on the surface of each respectively selected agar 
to culture bacteria. Five groups of bacteria were enumerated including total aerobic and anaerobic bacteria, 
coliforms, E. coli, Lactobacillus spp. and Clostridium perfringens. Aerobic and anaerobic bacteria were cultured 
on commercial blood agar (BA; Bak-Teszt Ltd., Budapest, Hungary). Coliforms and E. coli population were 
estimated on ChromoBio Coliform Agar (BioLab, Budapest, Hungary). The amount of Lactobacillus spp. was 
determined by using de Man Rogosa Sharpe (MRS) agar (BioLab, Budapest, Hungary). For enumeration of 
C. perfringens, the pour plating technique with tryptose sulphite cycloserine (TSC) agar (ISO7937 – VWR 
Chemical, Budapest, Hungary) was applied. The same amount of diluted sample (100 µl) was pipetted and mixed 
with TSC agar (10 ml) on Petri dish. Then 10 ml TSC agar were added to cover the thick layer after complete 
solidification of the previous medium. The temperature and incubation time of culturing were 37 °C and 1 day; 
while those of Lactobacillus spp. culturing were 30 °C and 3 days.

The colony forming units/g (CFU/ g) were calculated using the formula:
N = ΣC/V×1.1×d
where ‘ΣC’ is the sum of the colonies counted on the two dishes retained from two successive dilutions, at least 

one of which contains a minimum of 10 colonies; ‘V’ is the volume of inoculums placed in each dish in millilitres 
and ‘d’ is the dilution corresponding to the first dilution retained.

DNA extraction and qPCR
The DNA extraction was carried out with approximately 200 mg of the frozen caecal sample using the 

QIAamp® DNA Stool Mini Kit (Qiagen, Budapest, Hungary) according to the manufacturer’s instructions. The 
final concentration of the extracts were set to 60 ng/µl.

The standard curve was created by dilution series of purified polymerase chain reaction (PCR) products for 
Lactobacillus spp. and Firmicutes whereas the dilution series of plasmid concentration (where plasmids contained 
a bacteria specific PCR product) was used to prepare the standard curve for total bacteria, Enterobacteriales, 
E. coli, Clostridium spp. and Bacteroides and Prevotella spp.

The quantity of bacterial groups was determined by qPCR (Mx3000P, Agilent Technologies, CA, USA) 
using SYBR Green. The primers for the investigated bacterial groups were selected based on previous literature 
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(Table 1). The qPCR was conducted in a 25 µl/tube reaction mixture containing 12.5 µl Brillant II SYBR 
qPCR Low Rox Master Mix (Agilent Technologies, CA, USA), 0.2 µM of the primer, 10.5 µl sterile diethyl 
pyrocarbonate (DEPC) treated distilled water, and 1 µl (60 ng/µl) of DNA extract. The qPCR program for total 
bacteria, Enterobacteriales, E. coli, Bacteroides and Prevotella spp. consisted of 10 min at 95 °C, 40 cycles 
of 30 s at 95 °C, 1 min at 60 °C whereas the qPCR program for Firmicutes was slightly modified as follows, 
10 min at 95 °C, 40 cycles of 15 s at 95 °C and finally 1 min at 60 °C. To investigate the amount of Clostridium 
spp., the qPCR program was 3 min at 95 °C, 40 cycles of 40 s at 95 °C, 40 s at 54 °C, 80 s at 72 °C, and the end 
cycle was 3 min at 72 °C.  All samples were measured in triplicates. The bacterial content of the samples was 
calculated by comparison with the standard curve derived from the dilution series. The obtained copy numbers of 
the samples were adjusted to 1 g of caecum contents.

Statistical analysis
The IBM SPSS Statistics for Windows software, Version 22.0. (Armonk, NY, IBM Corp., USA) was used for 

statistical analyses. The comparison of means was performed by independent samples t-test and one-way ANOVA 
with Tukey’s post hoc test. Repeated measures ANOVA was used to analyse the trend of the amount of bacterial 
DNA copy number during the different sampling dates.
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Table 1. Oligonucleotide sequences used for quantitative polymerase chain reaction in samples from pigs.

Investigated group Oligonucleotide sequence (5’–3’ ) Length of 
  amplification References
  product (bp)

Total bacteria Forward:   Amann et al. (1995);
 GCAGGCCTAACACATGCAAGTC   Marchesi et al. (1998);
 Reverse:  292 Castillo et al. (2006)
 CTGCTGCCTCCCGTAGGAGT   Sghir et al. (2000);
Enterobacteriales Forward:   Leser et al. (2002);
 ATGGCTGTCGTCAGCTCGT 177    Castillo et al. (2006)
 Reverse: CCTACTTCTTTTGCAACCCACTC

Escherichia coli Forward: 
 GGTATGGATCGTTCCGACCT 300 Banu et al. (2010);
 Reverse: GGCAGAATGGTAACACCAGAGT   Pers-Kamczyc et al. (2011)

Bacteroides. Forward: 
and Prevotella spp. GAAGGTCCCCCACATTG     
 Reverse:  418 Kim (2011)
 CAATCGGAGTTCTTCGTG

Clostridium spp. Forward: 
 AAAGGAAGATTAATACCGCATAA      722 Mirhosseini et al. (2010)
 Reverse: 
 ATCTTGCGACCGTACTCCCC

Lactobacillus spp. Forward:   
 AGCAGTAGGGAATCTTCCA  Walter et al. (2000)
 Reverse:  340 Heilig et al. (2002);
 CACCGCTACACATGGAG  Su et al. (2008)

Firmicutes spp. Forward: 
 GGAGYATGTGGTTTAATTCGAAGCA
 Reverse:  126 Guo et al. (2008)
 AGCTGACGACAACCATGCAC

Delta-  Forward: GCTAACGCATTAAGTRYCCCG
and Gammaproteobacteria Reverse: GCCATGCRGCACCTGTCT 189 Yang et al. (2014)



Results
The alteration of the amount of living bacteria in the pigs’ caecum is shown in 

Table 2. Six bacterial types were investigated including aerobe, anaerobe, E. coli, coliforms, 
Lactobacillus spp. and C. perfringens. Only one difference was observed between the 
expressed number of aerobic bacteria of control and experimental groups at Day 4, i.e. 
8.60 ± 0.22 compared to 8.06 ± 0.20 (P < 0.05), respectively, meanwhile no change 
was found during the trial within each group as well as in trending comparison between 
two groups. The number of anaerobic bacterial species increased while the amount of 
C. perfringens decreased in a time-dependent manner (P < 0.05) within the groups. 
However, no differences were observed in the entire comparison between the experimental 
and control groups. No significant changes were observed in the amounts of E.coli, 
coliforms and Lactobacillus spp. at all sampling points.

Discussion

Most of the bacterial species in the gastrointestinal tract cannot be identified by classic 
culturing, only by genetic tools. In the intestine of pig, Firmicutes and Bacteroidetes are the 
most dominant phyla (Isaacson and Kim 2012). Firmicutes are a major phylum including 
mostly Gram-positive bacteria such as Bacilli, Clostridia and Erysiphelotrichia whereas 
Bacteroidetes consists of many classes of Gram-negative bacteria including Bacteroides 
and Prevotella spp. Besides those big phyla, other types of bacteria were investigated by 
qPCR in this study such as Enterobacteriales and E. coli (Table 3). 

The amount of total bacteria was altered within groups (P < 0.01) and significant 
differences were observed at the sampling points Day 2 and Day 6. Considerable differences 
between control and experimental groups were presented in Firmicutes on Day 2, and 
Enterobateria and E. coli on Day 4. Although the number of scanned bacterial species was 
changed at different sampling points, when taking into account the whole exposure period 
and all the investigated bacteria no significant difference could be observed between the 
control and experimental groups.

It has been reported that FB1 induces immunosuppression in pigs and that it exerts 
negative effects on the intestinal epithelial cell viability and proliferation (Bouhet and 
Oswald 2007; Bracarense et al. 2012) leading to alterations in the gastrointestinal 
microbial system. Lallès et al. (2009) proved a correlation between FB1 consumption 
and the increase of stress protein in the gastrointestinal track in pigs. Cytokine balance 
was altered after 1 week of dietary exposure to FB1 (1.5 mg/kg b.w.), interleukin-4 was 
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Table 2. Number of bacteria in the caecal chyme of control and fumonisin B1 exposed pigs measured by culturing 
(log10 CFU/g, mean ± SD).

Bacteria Day 0 Day 4 Day 8
 C E C E C E

Aerobic bacteria 8.44 ± 0.10 8.06 ± 0.41 8.60b ± 0.22 8.06a ± 0.20 8.56 ± 0.48 8.13 ± 0.62
Anaerobic bacteria 8.65 ± 0.07 8.68 ± 0.35 9.36 ± 0.33 9.26 ± 0.17 9.42 ± 0.22 9.35 ± 0.05
E. coli 7.68 ± 1.12 7.27 ± 0.21 7.70 ± 0.29 7.23 ± 1.08 7.32 ± 0.47 7.41 ± 0.95
Coliforms 6.72 ± 0.96 6.48 ± 0.64 6.98 ± 0.44 6.33 ± 0.09 6.07 ± 0.56 6.37 ± 0.55
Lactobacillus spp. 7.86 ± 0.14 8.16 ± 0.56 8.44 ± 0.34 8.17 ± 0.38 8.35 ± 0.55 8.16 ± 0.67
Clostridium perfringens 4.63 ± 0.06 4.21 ± 0.62 3.55 ± 0.68 3.42 ± 0.91 3.15 ± 0.61 3.38 ± 0.89

C - Control group; E - Experimental group; CFU: colony forming unit
a, b: significant (P < 0.05) difference between control and experimental groups.



decreased, interferon-gamma synthesis was 
increased (Taranu et al. 2005). Bouhet 
et al. (2006) reported that FB1 (0.5 mg/kg b.w. 
for 7 days) effected the intestinal immune 
response by reducing the level of interleukin 
IL-8. However, the effects of FB1 on bacterial 
species are controversial based on the few 
studies in the literature. Becker et al. (1997) 
treated certain bacterial strains including 
E. coli and Salmonella with FB1 but did not 
observe any inhibition of the bacterial growth 
while FB1 (0.5 to 1 mg/kg body weight) could 
predispose in the colonization of pathogenic 
E. coli in pigs (Oswald et al. 2003; 
Devriendt et al. 2010). A significant change 
in the faecal microbiota composition was 
observed in pigs co-infected with Salmonella 
and fumonisins (11.8 mg/kg FB1 + FB2 of 
feed) for 9 weeks (Burel et al. 2013). In this 
study, the growth of bacteria including E. coli 
in control groups was similar to experimental 
groups though there were differences in some 
points of sampling. 

Microbial communities can be 
distinguished by the factors related to breed, 
season or sampling time (Pajari l lo et al. 
2014). The amount of bacteria in the intestine 
can also be affected by different diets (Frese 
et al. 2015). The stability of the amount of 
caecal bacteria in this study showed that the 
gut microflora might have adapted to the 
environmental change (i.e. toxin exposure). 
Fumonisin producing F. verticillioides can 
modify the bacterial growth but only within a 
short period while no change of investigated 
bacteria was observed on the 8th day of the 
fungal treatment. A longer time of exposure 
should be performed in order to achieve more 
information on the influence of FB1 on the 
intestinal microorganisms.

In practice, F. verticillioides frequently 
infests cereals. Since its product FB1 affects 
a variety of cell signalling molecules 
manifesting through e.g. carcinogenesis 
or apoptosis and is linked to toxicosis in 
domestic animals, it is important to explore 
how microbiota responds to a FB1 load. 
The accumulating knowledge can lead to 
the possibility of educated intervention via 
bacterial community to avoid the effects of 
FB1.
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