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Abstract
The heterotherm immune system undergoes significant variation in response to life cycle 

periodicity and torpor. As heterothermic bats are important reservoirs of zoonotic agents 
and modulation of immune activity can affect host-pathogen interactions, this work aimed at 
developing a suitable method for assessing heterotherm phagocyte activity. Chemiluminescence 
measurements were evaluated by mathematical and mechanistic approaches, both of which 
yielded comparable results in time-related parameters of phagocyte activity. Using a mathematical 
method, however, we developed a model that can be applied to particular specimens. The proposed 
equation offers a simple and reliable tool for comparing phagocyte activity, the values of which 
can be used for further analysis. While time-related parameters of bat phagocyte activity varied 
with measurement temperature, with the onset of respiratory burst at 38 °C being quicker than at 
25 °C, quantitative values ​​of phagocyte activity were not influenced by measurement temperature. 
Further, homeotherm phagocyte activity parameters were more variable at 25 °C. Considering 
there was no influence of measurement temperature on the total volume of heterotherm phagocyte 
activity, we suggest that parameters measured at 25 °C are more representative of the immune 
status adapted to physiological extremes at low body temperatures.

Innate immunity, respiratory burst, torpor, hibernation, bat, laboratory mouse

The immune system of heterothermic mammals is greatly influenced by energy-
conserving mechanisms such as hibernation and daily torpor (Bouma et al. 2010a; 
Bouma et al. 2010b; Bouma et al. 2013). The efficiency of immune responses is species-
specific and depends on the temperature range utilised (Andjus et al. 1964; Marnila 
et al. 1995; Lojek et al. 1997; Mondal and Rai  2001; Maniero 2002; Buchtikova 
et al. 2011), with phagocyte activity and other immune functions being reduced significantly 
by decreased body temperatures (Carey et al. 2003; Bouma et al. 2010a). 

The most pronounced change in the immune system of heterotherms is a reduction in 
the number of circulating phagocytic cells (Bouma et al. 2010a). The decrease in the 
number of circulating neutrophils during torpor could be explained by lowered production 
of neutrophils, increased apoptosis, adherence of cells to the endothelium of mesenteric 
venules and temporary retention of cells at specific locations, such as the lungs, liver and 
spleen (Wilson et al. 1958; Inkovaara and Suomalainen 1973). According to Bouma 
et al. (2013) neutrophils are retained in the marginal pool (i.e. adherent to the vessel wall) 
during torpor and released during arousal. Circulating phagocytic cells use reactive oxygen 
species (ROS) for killing pathogens. ROS are toxic substances that display microbicidal 
activity against pathogens engulfed by phagocytes (Murphy et al. 2012). This granulocyte 
reaction is termed respiratory burst (RB) and is quantified using a chemiluminescence assay. 
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This method has previously been used to measure RB in both homeothermic wistar rats and 
poikilothermic frogs and fish (Marnila et al. 1995; Lojek et al. 1997; Buchtikova et al. 
2011) but, to our knowledge, has never been applied to heterothermic mammals.

Hibernation and daily torpor are multi-stage events during which heterotherms undergo 
sequential physiological stages. Periodicity in torpor/arousal cycles includes euthermia, 
cooling into torpor, prolonged torpor and re-warming from torpor. Each stage involves 
varying metabolism and immune system states, each of which is of species-specific 
duration (Boyer and Barnes 1999; Heldmaier et al. 2004; Havenstein et al. 2016). 

The aim of this study was to elaborate a method for evaluating heterotherm phagocyte 
activity that would be useful for analysing the highly variable physiological states 
undergone during hibernation. Based on present knowledge of the bat immune system, 
and the argument that hibernation is not a uniform state, we also assessed (1) differences 
between heterotherms (two bat species) and homeotherms (laboratory BALB/C mouse 
Mus domesticus), and (2) differences induced by the temperature at which phagocyte 
activity is measured. We hypothesise that heterothermic bats display greater variability 
in the quantitative parameters measured, mirroring their physiological states during 
hibernation/daily torpor, and that lower measuring temperatures delay the onset of the 
chemiluminescence curve and reduce peak phagocyte activity.  

Materials and Methods

Eleven cave-hibernating bats (greater mouse-eared bat Myotis myotis) and 12 rock-crevice and/or tree-hole 
hibernating bats (common noctule Nyctalus noctula) were sampled soon after the hibernation period in 2018. To 
collect blood from the uropatagial vessel, the bats were manually restrained and the overlying skin was disinfected 
with alcohol. Blood (approximately 120 μl) was then drawn from a sterile needle puncture site using a heparinised 
pipette tip (Pikula et al. 2017; Bandouchova et al. 2018). Blood was collected from the saphenous vein of 
14 adult BALB/c laboratory mice (purchased from a commercial supplier) without anaesthesia (Parasuraman 
et al. 2010). Blood cells were counted using a Nihon Kohden MEK-5208K cell counter (Nihon Kohden 
Corporation, Tokyo, Japan). Whole blood was stored in polypropylene tubes at room temperature and used for 
the measurement within two hours (Kaever et al. 1992), as long as the control chemiluminescence remained 
constant. 

 
Phagocyte activity measurement

Phagocyte respiratory burst (RB) activity was measured using chemiluminescence enhanced by luminol 
(Sigma-Aldrich Merck KGaA, Darmstadt, Germany) (Papezikova et al. 2016). The reaction mixture included 
the ca 120 μl blood sample diluted at a ratio of 1:50 in Hank’s balanced salt solution, luminol dissolved in borate 
buffer and 0.25 mg·ml-1of Zymosan A (Sigma-Aldrich Merck KGaA) opsonised with bat serum as an activator. 
Chemiluminescence kinetics were measured at two different temperatures using a Cytation 3M reader (BioTek 
Instruments, Inc., Winooski, VT, USA) over two hours. The measuring temperatures were set at 25 °C and 
38 °C to simulate variability in the physiological state of bats arousing and re-warming from hibernation torpor 
to homeothermy. The body surface temperature of bats at the time of blood sampling was approximately 24 °C 
(Pikula et al. 2017), indicating a much higher core body temperature (Bartonicka et al. 2017).

Five parameters characterising phagocyte activity were obtained from the data. The peak in the 
chemiluminescence curve (Peak) was measured in relative light units (RLU), representing maximum RB 
intensity. Total phagocyte activity (Integral) was defined as the reaction curve area (calculated directly from 
the raw data by the luminometer), with this value further adjusted to the total white blood cell count (Adjusted 
Integral). As individual phagocyte activity curves displayed different patterns, we also evaluated two time-related 
parameters (in seconds), i.e. time-to-start (Tstart) and time-to-peak (Tpeak), these reflecting the time necessary for 
the chemiluminescence curve to start growing and for phagocyte activity to reach its highest chemiluminescence 
value. Tstart was defined as the first chemiluminescence measurement with a value over 1, or as the point at which 
the equation reached value 1. Time-to-end (Tend) reflected the time needed for the curve to reach its endpoint, i.e. the 
theoretical period during which all phagocyte activity was exhausted. This value was calculated mathematically 
from the defined equation (see below) and expressed against the point at which chemiluminescence declined to 
value 1.

Statistical analysis
Normal distribution of variables was tested using the Kolmogorov-Smirnov and Shapiro-Wilk tests. As 

the variables were not normally distributed, and logarithmic (log) transformation did not result in normality, 
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statistical analysis was conducted using the non-parametric Wilcoxon matched pair test and the Spearman rank 
order correlation. Interquartile range divided by the median, analogous to the coefficient of variation, was used as 
a measure of relative variability in the subsamples. Suitability of mathematical models (Sutton 1997) proposed 
for phagocyte activity evaluation was tested using the Akaike information criterion (AIC). Statistical analysis 
was performed in Statistica for Windows v. 13.3 or in R software using the support package dplyr (Wickham 
et al. 2019). Values of P < 0.05 and P < 0.01 were considered significant and highly significant, respectively, for 
all tests.

Ethics statement
Blood samples were collected from both bats and laboratory mice non-lethally while minimising animal distress, 

as stipulated by Czech Law No. 114/1992 on Nature and Landscape Protection (permits 1662/MK/2012S/00775/
MK/2012 and 00356/KK/2008/AOPK issued by the Agency for Nature Conservation and Landscape Protection 
of the Czech Republic) and the Ethics Committee of the Czech Academy of Sciences (No. 169/2011). The authors 
of the study are approved as competent to design and perform animal experiments and handle free-living bats 
(Czech Certificate No. CZ01341, §15d/3 of Act No. 246/1992).

Results 

Comparison of respiratory burst evaluations using mathematical 
and mechanistic approaches

A mechanistic evaluation of RB proved relatively simple as we obtained the parameter 
values directly from the moving average datasets. For statistical evaluation, we first tested 
which mathematical model would best fit the data. Initially, we tried an empirical model 
with log-normal distribution, based on the equation:

y = ax2 exp-bx

This simple dependence equation with its quadratic onset and exponential decrement 
turned out to be insufficient for describing real relationships. We then tried a variant using 
a generalised exponent:

ax2 exp-bxp

The Akaike information criterion confirmed that the second model with a generalised 
exponent was a better fit to the data in all datasets (Table 1). The equation was then 
transformed in order to calculate time-related or quantitative parameters, i.e.

where m is the peak of the function, t is the time when the peak occurred and p is the exponential 
power. This made it possible to determine all phagocyte activity parameters directly from the 
curves for each dataset. Other parameters, such as the time when the curve started to grow (Tstart) 
and started to decline toward the end point (Tend), were calculated by making the equation equal 
to 1 (Fig. 1).

Both phagocyte activity evaluation approaches gave comparable results for the parameters 
measured (Peak, Tpeak, Tstart) in four of six dataset combinations (two bat species and two 
measurement temperatures; Fig. 2). Exceptions caused by extremely high variability in the 
original data (Fig. 1) were only found for greater mouse-eared bats (Tpeak at 25 °C; Z = 2.04 
P = 0.04; Tstart at 38 °C Z = 2.93, P = 0.003). The values given by both approaches were 
significantly correlated (P < 0.05) in all parameters. The Integral and Adjusted Integral 
were excluded from this analysis due to the differing nature of the data produced by the 
mechanistic and mathematical approaches. 

m x2 expt2
 2  x p-1

 p  t (-         )
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Fig. 1. Representative phagocyte activity kinetics for heterothermic bats Myotis myotis (A) and Nyctalus noctula 
(B) and the homeothermic laboratory mouse Mus domesticus (C). Activation is in RLU (reactive light units) 
and represents the intensity of respiratory burst over time (in seconds) at a measurement temperature of 25 °C. 
The three curves represent 1) raw data (dots connected by full line), 2) moving averages (dotted curve), and 
3) calculated values (dashed curve).
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Influence of measurement temperature and model species on respiratory burst
Time-related parameters (Tstart, Tpeak, and Tend) of bat phagocyte activity were significantly 

shorter at the higher measuring temperature (Table 2). There was no difference in the Integral 
and Adjusted Integral measurements of total phagocyte activity (Table 2). The Peak value 
was again higher at the higher measuring temperature (Table 2). The lower measuring 
temperature had a much greater impact on phagocyte activity in the homeothermic laboratory 
mice (Fig. 2, Table 3). Peak and total phagocyte activity were both reduced along with all 

Fig. 2. Values of phagocyte activity parameters measured at two different temperatures. Explanation: empty boxes 
= measurement temperature of 25 °C; dashed boxes = measurement temperature of 38 °C; middle point = median; 
box = inter-quartile range; whiskers = non-outlier range; dots = outliers; stars = extremes.
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Table 2. Comparison of phagocyte activity parameters measured at two different temperatures. Significant results 
are in italics.

	  	 Myotis myotis	 Nyctalus noctula	 Mus domesticus
Time parameters	 n	 Z	 P	 n	 Z	 P	 n	 Z	 P
Tpeak 25 &Tpeak 38	 11	 2.934	 0.003	 12	 3.0594	 0.002	 14	 0.910	 0.363
Tstart 25 &Tstart 38	 11	 2.934	 0.003	 12	 3.059	 0.002	 14	 2.417	 0.016
Tend 25 & Tend 38	 11	 2.934	 0.003	 12	 0.784	 0.433	 14	 3.296	 0.001
Quantitative parameters	 n	 Z	 P	 n	 Z	 P	 n	 Z	 P
Peak 25 & Peak 38	 11	 2.401	 0.016	 12	 2.197	 0.028	 14	 3.296	 0.001
Integral 25 & Integral 38	 11	 0.978	 0.328	 12	 0.863	 0.388	 14	 3.233	 0.001
Adjusted Integral 25 & 38	 11	 0.622	 0.534	 12	 0.628	 0.530	 13	 3.180	 0.001

Tpeak - time necessary for the chemiluminescence curve and for phagocyte activity to reach its highest chemi-
luminescence value; Tstart - first chemiluminescence measurement with a value over 1, or as the point at which the 
equation reached value 1; Tend - time needed for the curve to reach its endpoint, i.e. the theoretical period during which 
all phagocyte activity was exhausted; Peak - maximum RB intensity; Integral - reaction curve area calculated directly 
from the raw data by the luminometer; Adjusted Integral - value further adjusted to the total white blood cell count

Table 3. Coefficient of variation (interquartile range divided by median) used as a measure of relative variability 
in subsamples. Increases in variability at low measurement temperatures are in italics.

Parameter	 Myotis myotis	 Nyctalus noctula	 Mus domesticus
	 38 °C	 25 °C	 38 °C	 25 °C	 38 °C	 25 °C
Tstart	 0.64	 0.82	 0.76	 0.58	 0.87	 1.56
Tpeak	 0.33	 0.16	 0.31	 0.10	 0.16	 0.85
Tend	 0.16	 0.20	 0.33	 0.27	 0.19	 0.47
Peak	 1.08	 0.99	 1.11	 0.78	 0.99	 1.07
Integral	 0.84	 1.14	 0.95	 0.91	 0.76	 1.23
Adjusted Integral	 0.97	 1.25	 0.68	 0.93	 0.51	 0.67

Tstart - first chemiluminescence measurement with a value over 1, or as the point at which the equation reached 
value 1; Tpeak - time necessary for the chemiluminescence curve and for phagocyte activity to reach its highest 
chemiluminescence value; Tend - time needed for the curve to reach its endpoint, i.e. the theoretical period during 
which all phagocyte activity was exhausted; Peak - maximum RB intensity; Integral - reaction curve area 
calculated directly from the raw data by the luminometer; Adjusted Integral - value further adjusted to the total 
white blood cell count

Table 1. Akaike information criteria for two mathematical models proposed for fitting phagocyte respiratory 
burst data. 

Experiment
Species/cell incubation temperature	

AIC basic	 AIC advanced

Myotis myotis 25 °C	 300.88	 291.79
Myotis myotis 38 °C	 331.30	 308.93
Nyctalus noctula 25 °C	 312.34	 289.92
Nyctalus noctula 38 °C	 352.41	 334.63
Mus domesticus 25 °C	 343.41	 306.41
Mus domesticus 38 °C	 352.65	 312.84

The two models proposed for phagocyte activity evaluation (an empirical model with log-normal distribution and 
a model with a generalised exponent) were tested using the Akaike information criterion (AIC).



85

kinetic parameters, with the exception of Tpeak. Parameter variability in homeothermic mice 
increased dramatically at 25 °C.

Discussion
Comparison of respiratory burst evaluations using mathematical 
and mechanistic approaches

Considering the mechanistic evaluation of RB, moving average is used for smoothing 
raw data with extremely high variability (here based on 11 values, including five samples 
before and five after each measurement) and is commonly used with time-series data 
to smooth short-term fluctuations and highlight longer-term trends or cycles (Chou 
1989). In our case, the moving average could not be calculated with the first and final 
measurements; hence, they were excluded from further analysis. Moreover, the remaining 
first four and last four measurements had lower numbers of values averaged, i.e. 3, 5, 7 
and 9, respectively.

The proposed mathematical model also had its drawbacks. First, as expected, data 
variability was sometimes too high, which caused the prediction to fail. Second, in some 
cases, the predicted curve did not find the Tpeak value because the last values measured 
did not always decrease. This problem could be fixed by making the measurement period 
longer, allowing full depletion of phagocyte capacity. Third, if phagocyte activity was 
around zero then the model could not intersperse the data with the required parameters. 
Nevertheless, the proposed equation and selected oxidative burst parameters offers 
a simple and reliable tool for comparison of phagocyte activity data. For example, the 
chemiluminescence reader measured the Integral directly from the raw data (the reaction 
curve area), but the values calculated covered the whole area under the theoretical 
curve obtained from data with the control subtracted. However, the equation models the 
theoretical course of phagocyte activity after the end of laboratory measurement and we 
expected that the area under the calculated curve would better reflect the total phagocyte 
activity of the individual. Consequently, only values calculated by the new equation were 
used for subsequent analysis.

Influence of measurement temperature and model species on respiratory burst
Low body temperatures are known to induce a reduction in the number of circulating 

phagocytes and their activity (Bouma et al. 2010a). Several studies have demonstrated that 
leukopaenia at low temperatures is not restricted to hibernating species only (Wilson et 
al. 1958; Ainsworth et al. 1991; Collazos et al. 1994). Here, by using the luminometric 
method which allows assessment of phagocyte metabolic activity at low whole blood 
volumes in small mammals (Lojek et al. 1997) and parameters characterising phagocyte 
activity, we were able to describe reaction kinetics and quality at defined temperatures in 
two heterotherm and one homeotherm species.  

The bat phagocyte activity was faster at higher measuring temperatures, which 
corresponded with the euthermic state of bats, where the immune system is entirely 
active and quickly engages in defence reactions. Delayed kinetics might be expected in 
heterotherm bats as most physiological processes and the metabolism are reduced at the 
lower temperatures prevalent during hibernation and/or torpor bouts. Likewise, M a r n i l a 
et al. (1995) showed that leukocytes from cold-acclimatised frogs (5 °C) were incapable 
of producing a RB at 37 °C. We assume that the innate immune parameters selected in this 
study will show different levels of immune response in hibernating and non-hibernating 
animals. The non-hibernating animals use daily torpor to survive rainy and cold weather so 
we expect this method to be applicable to them.

No difference in measurements of total phagocyte activity, indicating that all bat 
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phagocytes are able to activate after a certain period, despite lower measuring temperatures. 
In this case, it follows that the time-related parameters would vary; however, somewhat 
surprisingly, the quantitative parameters did not.

Phagocyte activity of laboratory mice (representing the homeotherm species) was much 
more influenced by lower measuring temperature. We assume, therefore, that the optimal 
measuring temperature for the reaction corresponds to body temperature in homeotherms.

While both temperatures measured appear to be applicable for analysis of heterotherm 
phagocyte activity, parameters measured at 25 °C better reflect their physiological state 
during torpor and/or arousal from torpor. As the variability in phagocyte activity reflects the 
physiological and thermal state of particular animals, activity must be analysed separately 
for each specimen under natural conditions.

It may be assumed that the innate immune parameters achieve different response levels 
in hibernating and non-hibernating animals. As non-hibernating animals use daily torpor 
to respond to inclement weather (rain and cold), we expect the proposed method be also 
applicable during the active season of heterothermic animals.

To conclude, the proposed mathematical method for evaluating phagocyte activity 
is better suited for the analysis of innate immunity of hibernating and non-hibernating 
animals reflecting their body temperatures and physiological states.
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