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Abstract
The profitability of cattle farming is largely determined by ensuring high-quality breeding 

animals for replacement and longevity in production. The provision of breeding animals requires 
adequate fertility of the cowherd and then intensive weight gain in the calf rearing period. For 
ensuring these demands, many management aspects must be considered. Continuous monitoring 
of the herd’s health status, including redox status, is essential. This review aims to provide 
a summary of relevant scientific data published in the last few decades regarding the role of 
oxidative stress (OS) in infertility of dairy cows and developmental diseases in calves, the major 
predisposing factors, and possible prevention.  

Redox status, fertility, herd-health, dairy cattle

Fertility of dairy cows is crucial for ensuring breeding animals for replacement, and 
unfortunately, the decline in cattle fertility is often attributed to increased milk yield 
(Smith et al. 2014). Reproductive performance may be depressed by several biogenic and 
abiogenic factors, and most probably results from a combination of various physiological 
and management factors (Lucy 2001). The conception rate may be low due to biotic 
reasons such as an unmatured or unhealthy genital tract, low quality of oocytes, failures 
of implantation, or poor embryo development and health (Leroy et al. 2008; Al-Gubory 
et al. 2010; Walsh et al. 2011; Diskin et al. 2012; Healy et al. 2013). The major abiotic 
factors are the low effectivity of heat detection, improper insemination techniques, semen 
quality, feeding and housing technology including heat abatement (Senger 1994; Bage 
2003; Chebel et al. 2004; Tóth et al. 2006; Walsh et al. 2011). Proper nutrition and 
eligible energy supply are also vital factors in the management of ruminants. Negative 
energy balance (NEB) and metabolic stress are risk factors for reproduction performance 
(Leroy et al. 2006; Könyves et al. 2009a,b; De Bie 2017). Oxidative stress (OS) 
develops when the excessively formed oxygen free radicals (Reactive Oxygen Species; 
ROS) exceed the capacity of the body’s antioxidant (AO) defence mechanisms, which can 
cause cell damage or exacerbate diseases (Sies et al. 1985). In the periods of NEB, cows 
are vulnerable to OS (Abuelo et al. 2015, 2019; Elischer et al. 2015; Mikulková et al. 
2020).

Calves may experience several physiological challenges after birth, during the milk 
feeding period and around weaning (Weary et al. 2008). The birth itself, the immature 
immune system, the high risk of contamination, and the transition from milk to solid feeds 
all act as stressors, usually exacerbated by environmental effects such as bad hygiene or 
heat stress (Weary et al. 2008; Hulbert and Moisá 2016; Kertz et al. 2017). Some 
of these factors can cause OS in calves (McGrath 2016; Vannucchi et al. 2019). The 
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adverse effects of the above factors should be significantly reduced in order to produce 
good quality breeding animals for cow replacement. For effective management of this 
period, it is essential to have a better understanding of the physiological background. 

Oxidative stress is currently an intensively researched area (Wen and Huang 2012). 
Despite the rapid growth of general knowledge, there are still many unexplored areas 
for OS in cattle, especially in calves. This review aims to gather the current knowledge 
regarding OS in cattle with particular attention to cow infertility and diseases of calves.

Relationship between fertility and redox status of cows

Gestation and calving are physiological but challenging conditions for animals. It is 
vital for economic dairy cattle farming that the heifers calve first at 24–25 months of age 
(Donovan et al. 1998) and that cows become pregnant within 110–120 days after calving. 
Fertilization and development of the foetus are mainly affected by the feeding and health 
of the cow, as well as several additional management factors. The failure of insemination 
may be caused by OS (Celi et al. 2012). 

The average duration of pregnancy is 279–288 days, affected by many factors, such 
as the breed, age, health status, sex of the foetus, and the season. If the duration of 
pregnancy is 10–15 days longer than the average for the specific breed, it is considered to 
be pathological. The fertilized oocyte migrates 72–96 h after fertilization from the ovarian 
duct to the uterus, and intrauterine life starts and lasts until calving. Approximately 40% of 
unsuccessful inseminations are due to early embryo death, and 7–8% of this is happening 
in the blastula stage, undetected by the farmers as it does not have any external symptoms. 
Also, early embryonic death occurs at the time of nidation, between days 16–32. Major 
causes of embryonic death include the inappropriate supply of essential nutrients, macro- 
and microelements, climatic factors, hormonal dysfunction of central or peripheral origin, 
and certain immunological factors (Haraszti 1993). Unregulated OS is also mentioned 
as a direct cause of early embryonic mortality (Rizzo et al. 2007; Jóźwik et al. 2012; 
Konvičná et al. 2015), which may cause failure in the implantation, however, the embryo 
may also be damaged in some other ways. For example, increased ROS production due to 
the activity of various inflammation mediators (e.g. cytokines), or even by the activity of 
a large number of neutrophils, may eventually lead to the death of the embryo. Oxidative 
stress may develop in heat stress, a primary cause of embryo damage in hot weather 
(Bernabucci et al. 2010; Jóźwik et al. 2012). In addition to several factors, OS may also 
play a role in uterine involution disorders, associated with infertility and diseases. In the case 
of endometritis, the high polymorphic nucleotide (PMN) count detected in the endometrium 
and also the elevated OS biomarker (advanced oxidation protein products; AOPP) suggest 
that OS is one of the causes leading to impaired fertility (Gabai et al. 2019).

The above may point to the fact that several factors can influence effective insemination 
and healthy foetal development, and OS may play a significant role in this. 

Links between the health of new-born animals, the milk feeding period,
and the redox status of the organism

During birth, the new-born’s respiratory system starts functioning and usually OS 
develops (Gaál et al. 2006; Mutinati et al. 2014; Ranade et al. 2014). Complications 
during calving can, directly and indirectly, endanger the life and further development 
of the new-born. First, dystotic calves are often born with low vitality (Vermorel et al. 
1989; Besser et al. 1990; Barrier et al. 2013). Oxidative stress can usually be detected 
in the case of dystocia (Yildiz et al. 2011; Kandemir et al. 2016), although the opposite 
observations are also known (Yokus et al. 2007).
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In new-born animals, due to their rapid development, protein oxidation processes often 
dominate (Ranade et al. 2014). The concentration of AOPP in blood plasma and AOPP/
albumin ratio are progressively decreasing from birth to weaning, whereas a reverse trend 
is observed in albumin and thiol groups (Celi and Gabai 2015).

The early uptake of good quality colostrum, rich in immunoglobulins (Igs), nutritious 
substances and AO in sufficient quantities (4 litres) plays a crucial role in the health of 
new-born calves (Blum et al. 1997; Morin et al. 1997).

The absorption of Igs through the gut decreases by 50% at 6 h after birth (Leslie 
2012). Failure in the passive immune transfer occurs in about 32–35% of calves (Weaver 
et al. 2000; Šlosárková et al. 2014). The low passive transfer may be due to poor quality of 
colostrum, but for example, severe acidosis at birth also causes 52% reduction in colostrum 
uptake and results in a 35% lower serum IgG level (Besser et al. 1990). Calving-related 
diseases are more likely to develop in calves with low levels of maternal IgG in serum 
(Donkersgoed et al. 1993; Waldner and Rosengren 2009; Leslie 2012).

However, providing maternal antibodies is not the only function of colostrum. Colostrum 
is rich in AOs, protecting the new-born from OS. It is reported that the production of 
colostrum can overload the cow’s AO systems and may cause OS (Goff and Horst 1997; 
Abuelo et al. 2016), especially when a cow suffers from NEB after calving and metabolic 
stress develops. It harms the immune function, health and production in early lactation and 
may also contribute to the development of OS (Kehrli et al. 1989; Sordillo and Aitken 
2009; Abuelo et al. 2019). Metabolic stress can often be detected before calving, and it 
may affect the health of calves as well. The rate of ROS formation after birth is higher in 
calves of cows with elevated non-esterified fatty acid (NEFA) values. Cows with OS have 
a higher blood concentration of haptoglobin, tumour necrosis factor alpha (TNFα) 
indicating the animals’ response to inflammation. Such calves have an impaired immune 
response to the lipopolysaccharide (LPS) challenge, an indicator of immunosuppression 
(Abuelo et al. 2019). 

It is beneficial for the health of calves that AOs in colostrum reduce the cellular adverse 
effect of OS at birth. The concentration of ROS in the blood is lower in the first 3–7 days 
of life; however, at 2–3 weeks of age, it rises again (Gaál et al. 2006). Others have also 
pointed out the importance of this temporary ROS/AO imbalance (Albera and Kankofer 
2010, 2011). 

In modern calf rearing systems, calves are typically fed with milk replacer formula after 
colostrum and the AO content of these products varies widely (McGrath 2016). If milk 
replacers have a lower AO content, additional AO supplementation to calves fed in this 
way is recommended (Lindmark-Månsson and Åkesson 2000; Friel et al. 2002; Chen 
et al. 2003; Clausen et al. 2009; Soberon et al. 2012; McGrath 2016; Abuelo et al. 
2019). 

The high rate of weight gain in the early stage of life plays a vital role in later productivity 
of adult animals as a 5–10 kg increase in weight gain in the pre-weaning period resulted 
in a significantly increased production in the subsequent lactation (Soberon and Van 
Amburgh 2013; Van De Stroet et al. 2016). If a higher growth rate is achieved by the 
feeding of larger amounts of milk replacers, it will later have a negative impact on the 
uptake of solid feeds and hinder the development of the rumen (Suarez-Mena et al. 2011; 
Margerison et al. 2013; McGrath 2016). 

The impact of weaning and management of the post-weaning period
on the redox status of animals

The weaning is technically the closure of the dairy calf rearing period. The weaning 
in animal husbandry differs from the natural process, as the change from milk feeding 
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to solid feeding takes place much earlier and mainly suddenly, without any or with 
a minimal transition period. This is a significant stress factor in young animals (Weary 
et al. 2008), which can deplete the body’s AO defence capacity and lead to the development 
of OS (Ranade et al. 2014; Buchet et al. 2017). The triggering effect of weaning on OS 
development has also been observed in piglets (Yin et al. 2014). The weaning upsets the 
ROS/AO balance, which is later restored with the development of AO defence systems 
(Celi and Gabai 2015). 

Daily feed rations typically contain a lot of fermented forages after weaning which mostly 
lack natural AO-rich fresh green feeds. Besides, environmental stress factors are common 
during this period, and therefore the AO requirements of calves are high (McGrath 2016). 
Therefore, additional AO supplementation during this period can help to maintain health 
and thus achieve a more intense weight gain (McGrath 2016)

The relationship between the most common calf diseases and the redox status

The pre-weaning mortality rate of the calves is 15.9% in the USA, caused by perinatal 
deaths of calves (8.1%) and diseases caused by various pathogens (7.8%) (Leslie 2012), 
mainly diarrhoea and respiratory diseases (bovine respiratory disease complex [BRDC]) 
during this period (Windeyer et al. 2014). The concentration of lipid peroxides is high, 
and AO defence capacity is low in case of BRDC (Al-Qudah 2009; Joshi et al. 2018; 
Blakebrough-Hall et al. 2020). Calf scours are common and can cause significant 
economic damage through reduced weight gain, treatment costs, and mortality. By 
examining calves with the disease, it was found that OS can play a significant role in 
its development (Ranjan et al. 2006). Similar results were obtained in studies of calves 
sickened by Cryptosporidium parvum, as there was a significant increase in malondialdehyde 
(MDA) and decreased superoxide dismutase (SOD) and catalase (CAT) levels (Gaadee 
et al. 2018).

Biomarkers and monitoring of oxidative stress in cattle

Although superoxide anion was discovered as early as the 1930s, research into the 
physiological effects of oxygen-originated free radicals and OS was most likely to be 
started by the discovery of the SOD enzyme in ‘60s (McCord and Fridovich 1969; 
Soares and Costa 2009). For detection of disbalance in capacity of AO defence system 
and ROS concentration, so called indirect methods such as measurement of glutathione 
peroxidase (GPx) and SOD activity, glutathione (GSH) and oxidised glutathione (GSSG) 
ratio are frequently used in research practice (Mikulková et al. 2019, 2020). 

Currently used biomarkers represent different approaches in OS detection:
1)	 factors that linked to the existence of OS: 

-	 lipid peroxidation and nucleic acid or protein damage products such as MDA, 
	 reactive oxygen metabolites (dROM), F(2)-isoprostane 8-iso-PGF(2α) , 8-hydroxy-2’ 
	 -deoxyguanosine,

-	 tests to detect the disintegration of red blood cells due to OS, such as the Kit Radical 
	 Libres which can be used to infer the AO capacity of blood plasma and red blood cells

-	 tests for quantification of AOs such as SOD, GPx, GSH:GSSG, BAP, PAT; 
2)	 metabolic parameters for detecting the increased fat mobilisation such as blood 
	 glucose, insulin, insulin-like growth factor, glycocarbon haemoglobin, non-esterified 
	 fatty acids, beta-hydroxybutyrate; 
3)	 parameters for detecting disorders of liver function such as aspartate aminotransferase, 
	 direct bilirubin, total bilirubin, cholinesterase; 
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4)	 tests for detecting inflammation-related factors, such as myeloperoxidase, calcium 
	 concentration, and acute phase proteins (Pastorelli et al. 2013; Sordillo and 
	 Mavangira 2014; Abd Ellah et al. 2016). According to Celi (2011), the most 
	 common diagnostic procedures used in practice for OS-testing are shown in Table 1. 

Targeted OS studies match well various herd monitoring studies, such as ketosis 
monitoring, body condition scoring, production and fertility indicators, and disease 
monitoring which may point to metabolic stress in the herd. For this reason, it is an obvious 
option to analyse OS indicators in parallel with metabolic profile studies, to identify links 
between OS and metabolic changes (Mikulková et al. 2020).

Most of the methods developed so far are only suitable for individual detection of 
oxidative stress. However, herd-level monitoring is also vital in a modern farm-animal 
veterinary practice. Methods for monitoring OS on the herd level could be a key course of 
further research (Leblanc 2006; Sordillo and Mavangria 2014; Píšťková et al. 2019).

The importance of strengthening antioxidant defence and its implementation

Antioxidants can function as an electron donor to free radicals and thus play an 
essential role in preventing the development of OS. On the other hand, AOs can eliminate 
the damages caused by ROSs help in restoring cell structure and function (Sies et al. 
1985; Cadenas and Packer 2002). The primary AOs are enzymes such as preventive 
SOD, CAT, GPx, glutathione reductase, and the restorative lipase, protease, DNA repair 
enzymes, and transferase. The secondary AOs are typically vitamins and pro-vitamins 
(e.g. vitamin E, vitamin C, ubiquinol, carotenoids), microelements (e.g. selenium, 
manganese, zinc, iron, copper) and other substances having an AO effect (e.g. polyphenols 
and including bioflavonoids, melatonin, urate, bilirubin, albumin, amino acids, omega-3 
and omega-6 fatty acids) (Palmieri and Sblendorio 2007; Spears and Weiss 2008; 
Mézes and Balogh 2009; Heidarpour et al. 2012; Celi and Gabai 2015; Talukder 
et al. 2017; Park et al. 2019). Ruminants can effectively absorb and synthesize ascorbic 
acid. However, some external and internal effects may inhibit the synthesis (e.g. heat stress, 
liver damage, intensive fattening, mastitis) or absorption (high levels of dietary iron, zinc, 
copper and pectin), when low vitamin C levels can be measured in plasma, and it is worth 
supporting the body with supplementation (Kleczkowski et al. 2005; Matsui 2012). In 
case of nutritional supply by vitamin C, it is essential to take into consideration that only 
by-pass additives are useable for this purpose because ruminal microorganisms can absorb the 
non-protected products. 

Since ruminants are able to synthesize ascorbic acid, they are only likely to experience 
deficiency symptoms in the neonatal period, before synthesis reaches full capacity. Cummins 
et al. (1992) cited several published reports of vitamin C deficiency signs in young calves.  

The carotenoids (β-carotene, α-carotene, lutein, zeaxanthin, lycopene, and 
β-cryptoxanthin) are also primary factors in the defence against OS (Karancsi et al. 2015). 
Park et al. (2019) showed that the concentration of carotenoids in plasma is in a significant 
negative correlation with the OS biomarker 8-iso-PGF2α (Park et al. 2019). Professional 
colostrum feeding management plays a significant role in this regard, in that the plasma 
carotene level increases about fivefold from 0.05 (S.D. 0.04) to 0.27 (S.D. 0.14) μmol/l 
after the first colostrum intake in calves (Bouda and Jagos 1984). The plasma carotenoid 
level then subsequently decreases to the age of six weeks and increases again from the age 
of only two months, which highlights the importance of switching to solid feeds for natural 
AO supply (Bouda and Jagos 1984).

The GPx enzyme requires selenium for its function; therefore, selenium plays a key role in 
proper intrauterine and postnatal development. In cows, a lower marginal supply (< 1 µmol/l) 
is often found (Sordillo 2013). Selenium is able to pass through both the placenta and the 
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udder barrier, but transmission through the placenta is much more effective. Therefore, 
it is also worth focusing on the supply of selenium to dry cows (Konvičná et al. 2015). 
Vitamin E plays a role in the neutralization of ROS by inhibiting the development of 
non-regulated inflammatory processes. A pro-oxidant reactive radical of vitamin E is 
formed, which is involved in the neutralization of ROS. Then, under normal physiological 
conditions, it is regenerated again into vitamin E in the presence of GPx and vitamin C. 
A week before calving, the level of vitamin E in plasma decreases by 50% and rises again 
only 3–4 weeks postpartum. This may be due to a reduction in the daily dry matter intake 
or the high vitamin E requirements of colostrum secretion. Supplementing cows with 
vitamin E before calving improves their AO status, reduces inflammation-related cytokine 
production and the development of mastitis (Konvičná et al. 2015). The concentration 
of AOPP is increased due to the peroxidation of plasma proteins, which can be reduced 
by a higher dose of vitamin E and selenium (Chauhan et al. 2014), demonstrating their 
combined AO effect. In light of these results, it can be concluded that supplementing milk 
replacer with selenium and vitamin E is important during the milk feeding period. It was 
shown that the OS-reducing effect of a milk replacer lacking in vitamin E and selenium was 
lower than that of whole milk (Soberon et al. 2012; Abuelo et al. 2019).

The AO supplementation should be carried out professionally, as AOs may become 
pro-oxidants and can cause the OS formation themselves (Mézes and Balogh 2009). 
Ascorbic acid may stimulate lipid peroxidation when it is in combination with iron or 
copper ions or hydrogen peroxide, providing an excess amount of Fe2+ ions for the formation 
of hydroxyl radicals in the Haber-Weiss reaction (Kankofer 2001; Kleczkowski et al. 
2005; McMichael 2007). The reaction is concentration-dependent in vitro, as ascorbic 
acid acts as a pro-oxidant at low concentrations and as an AO at higher concentrations 
(Gaetke and Chow 2003; McMichael 2007). In the presence of copper ion, vitamin E 
may also act as a pro-oxidant (Gaetke and Chow 2003). The use of vitamin E at higher 
doses may be dangerous for cows’ health if applied to all cows within the herd regardless of 
their previous vitamin E level and OS status assessment. This is evidenced by an increase 
in the prevalence of mastitis cases in cows treated with vitamin E during their dry period. 
Unfortunately, this study has not been published yet, and the dosage was not reported in 
the cited literature (Bouwstra et al. 2010). Knowing the current redox status of animals is, 
therefore, crucial for the success of AO supplementation. Herd-level OS monitoring on live 
animals, carried out under practical conditions, is thus essential for the implementation of 
a professional AO supplementation (Carletti et al. 2007; Celi et al. 2010; Celi and 
Gabai 2015; Talukder et al. 2017) 
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