First report of infection by Debaryomyces spp. in Myotis velifer (cave myotis) in Mexico

Héctor Tamayo^{1,2}, Miguel A. Domínguez², Luz María Ramírez Acevedo³, Graciela E. González Pérez¹, Margarita García-Luis^{1,2}, Diego Pérez de la Rosa⁴, Miguel Briones-Salas¹

¹Instituto Politécnico Nacional (IPN), CIIDIR Unidad Oaxaca, Laboratorio de Vertebrados Terrestres, Municipio de Santa Cruz Xoxocotlán, Oaxaca, México

²Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Medicina Veterinaria y Zootecnia, Laboratorio de Genética Molecular y Zoonosis, Oaxaca, México

³Laboratorio Clínico Veterinario Especialista en Patología Clínica "DxVet", Oaxaca, México ⁴Centro Nacional de Servicios de Constatación en Salud Animal, Jiutepec, Morelos, México

> Received January 23, 2021 Accepted August 31, 2021

Abstract

Interest in the study of mycotic diseases in bats has increased after the identification of bats affected by white-nose syndrome in the northern United States. In a temperate forest of the community of San Pedro Yolox, Ixtlán in the Sierra Madre de Oaxaca, Mexico, we collected bats of various species, including 13 specimens of *Myotis velifer* that showed lesions in the plagio- and uro-patagium. Clinical exploration, histopathological studies and molecular analysis were carried out to determine the causal agent of the lesions present in these individuals. It was determined that the cause was the pathogenic fungus *Debaryomyces* spp. The present study represents the first report of fungal infection in bats in southern Mexico.

Bats, dermatomycosis, diseases, mammals, mycosis, pathogens

The fungal agent *Pseudogymnoascus destructans* responsible for bat population declines in the northern United States has increased the interest in the study of bat fungal diseases. White-nose syndrome (WNS) is associated with the growth of *P. destructans* hyphae on the ears, nose, metatarsals, and other furless skin areas of body in insectivorous bat species during the period of hibernation. Therefore, *P. destructans* causes destruction of the apocrine and sebaceous glands, hair follicles and other dermal tissues (Cryan et al. 2010). While the wings play a fundamental role in gas exchange (contributing up to 10% of the total), wing membrane damage caused by WNS impacts the gas exchange, mobility and hydration status of infected bats. In addition to the fungus *P. destructans*, other pathogenic fungi have been discovered, such as *Trichophyton redellii* and *Debaryomyces* spp., responsible for similar but less common skin diseases (Blehert et al. 2009).

Trichophyton redellii is characterized by the development of lesions similar to WNS, with the difference that it does not fluoresce under a UV lamp and that the characteristic growth of fungal structures is in the snout, while *Debaryomyces* spp. was reported in a case with lesions similar to those of WNS but without describing the status of the infected specimen in greater detail (Lorch et al. 2015). Mexico is notable for the presence of 139 bat species distributed throughout its territory (Ramírez-Pulido et al. 2014). However, there is no published report on a fungal dermatological monitoring of this group of mammals.

During our study on the ecological aspects of a community of bats in the Sierra Norte de Oaxaca, we collected some individuals of *Myotis velifer* with damaged wings. For this reason, we decided to investigate the causal agent of the lesions present in these individuals.

Phone: 951 2889309 E-mail: margarita@garcialuis.net http://actavet.vfu.cz/

а ·

Materials and Methods

In February 2017, in the temperate forest located in the community of San Pedro Yolox, Ixtlán, in the Sierra Madre de Oaxaca, Mexico, a bat of the species *M. velifer* was collected. The specimen was subjected to the Wood lamp test, a battery-operated lamp from the LUX pro brand was used with 32 UV LEDs with a wavelength of 385–390 nm. The signology similar to WNS was the presence of "spots" in the patagium and uropatagium as well as the presence of fungal structures on histology (Turner et al. 2014). It was decided to euthanize the specimen using isoflurane overdose as described by Barnard (2009). Two tissue samples were collected from the plagiopatagium (1 cm²), one placed in 10% formaldehyde and the other stored at -20 °C for molecular analysis. The wing membrane was stained with haematoxylin and eosin.

Genomic DNA was isolated from the collected tissue using the commercial kit DNeasy Blood & Tissue (Qiagen, Bodenseeallee, Stockach, Germany) following the manufacturer's instructions. The fungal ITS region was amplified with the primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and 5.8S_fungi (5'-CAAGAGATCCGTTGTTGAAAAGTT-3'; Young et al. 2014), and sequenced using the 454 pyrosequencer (454 LifeScience, Roche Diagnostics, Branford, Pennsylvania, USA). The contigs obtained were assembled using the Bioinformatics software Newbler version 2.5.3 (Roche Diagnostic) and Consed version 23 (http://www.phrap. org/consed/consed.html). The sequences were arranged according to the number of readings obtained (Table 1) and compared with the information contained in the NCBI database through the BLAST tool (https://blast.ncbi. nlm.nih.gov/).

Subsequently, 12 individuals of *M. velifer* with similar patterns of wing lesions were captured and a clinical review was carried out. For the review, two 1 cm² samples of plagiopatagium were obtained from each bat with a scalpel for histopathological and molecular studies. In addition, an inspection of the wings was carried out according to the wing damage index proposed by Reichard and Kunz (2009). The specimens were captured with the permission of the Government of Mexico through La Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT), number FAUT-0037.

To confirm the presence of *Debaryomyces* spp., a pair of specific primers was designed (DEB-18S-FW: 5'-CAAGAACTTTTGCTTTGGTCT-3' and DEB-18S-RW: 5'-GCACTATCCAGTACCACTCAT-3') to amplify a 384-bp fragment from the ITS region of *Debaryomyces* spp. The fragment amplification reaction was carried out using the Accuzyme DNA polymerase kit (Bioline, Humber Road, London, UK) following the manufacturer's instructions. The reaction mixture included 1 µl of extracted genomic DNA (50 ng/µl), 1 µl (10 µMol) of each primer (DEB-18S-FW and DEB-18S-RW), 5µl Accuzyme reaction mixture (1 U DNA polymerase, MgCl₂, deoxynucleotides), and nuclease-free water to make up a final volume of 10 µl. A T100 thermocycler (BioRad) was used, which was programmed according to the following amplification conditions: Initial denaturation 5 min at

NCDI 1

95 °C followed by 35 cycles of 95 °C for 30 s, 53 °C for 1 min, 72 °C for 1 min, and finally an extension of 72 °C for 10 min. The products obtained were subjected to electrophoresis in 1% agarose gels stained with ethidium bromide (GeminiScientific, Sunnyvale, CA, USA), including a molecular weight marker of 100 pb Hyperladder (Bioline, Humber Road, London, UK).

To carry out the phylogenetic analysis of the causal agent, the amplification of a positive sample was carried out by PCR in a volume of 100 μ l. The PCR product was verified on 1% agarose gel and gel-purified using the Wizard Genomic DNA purification kit (Promega, Madison, WI, USA) following the manufacturer's instructions. The purified product was quantified on a Nanodrop 2000 (Thermo) nanospectrophotometer and sequenced in a DNA sequencer with 16 capillary 3130×1 (Applied Biosystems, Foster City, CA, USA).

A dendrogram was generated by Sanger sequencing from the previously obtained sequence. The sequence was aligned with ITS sequences reported in the GenBank (https://www.ncbi.nlm.nih.gov/) for the genus *Debaryomyces*, as well as for other genera of mycotic agents reported as bat pathogens (Table 2). The construction of the dendrogram and bootstrap analysis (1000 repetitions) were performed through the bioinformatic program Mega v5.05 (Tamura et al. 2011).

Table 2. Sequences used for the genus Debaryomy	ces	and
other genera to generate the dendrogram.		

Species	NCBI code
Debaryomyces hansenii	KY103235.1
Debaryomyces fabryi	NR_138186.1
Debaryomyces maramus	KY103271.1
Debaryomyces vindobonensis	NR_138218.1
Debaryomyces coudertii	NR_138161.1
Debaryomyces nepalensis	NR_130651.1
Debaryomyces psychrosporus	HM769277.1
Debaryomyces renaii	NR_111609.1
Debaryomyces castellii	NR_111306.1
Debaryomyces udenii	NR_077068.1
Debaryomyces prosopidis	NR_077067.1
Debaryomyces vietnamensis	KY103297.1
Debaryomyces udenii	KY103296.1
Debaryomyces singareniensis	KY103290.1
Trichophyton spp.	MH021152.1
Malassezia vespertilionis	NR_157486.1
Aspergillus spp.	KT221871.1
Candida spp.	KX944465.1
Pseudogymnoascus destructans	NR 111838.1

Table 1. Fungal microbiome obtained by the technique of massive sequencing (fungal diversity): The first column corresponds to the species identified for each sequence, the second column to the percentage identity in relation to the NCBI databank, the third column to the number of readings obtained through massive sequencing, the fourth column belongs to code of the NCBI sequence with which the obtained sequence was compared and the final column corresponds to the percentage of the total readings of the massive sequencing.

Species	Percent identity	Reads number	NCBI code	Percent reads
Debaryomyces maramus	98	17738	KM091320.1	89.40524194
Beauveria bassiana	100	364	KY806126.1	1.834677419
Pleurotus dryinus	99	342	KY962461.1	1.723790323
Malassezia dermatis	92	287	KY104083.1	1.446572581
Leptosphaerulina chartarum	100	108	KM979510.1	0.544354839
Curvularia aeria	98	84	MF101868.1	0.423387097
Cladosporium tenuissimun	100	75	KY781763.1	0.378024194
Alternia solani	99	71	KT384228.1	0.357862903
Nigrospora sphaerica	100	52	KX688172.1	0.262096774
L042880-122	99	45	GU053988.1	0.226814516
Cora leslactuca	100	41	KY772646.1	0.206653226
Oxyporus populinus	99	36	KJ140633.1	0.181451613
Ganoderma spp.	99	35	KF605667.1	0.17641129
Pvrigemmula aurantiaca	89	35	HM241692.1	0.17641129
Microascus hollandicus	99	32	KX923869.1	0.161290323
Hongo endofito 6303	100	32	KR016373.1	0.161290323
Trichurus spiralis	93	29	LN850977.1	0.146169355
Phialemonium inflatum	99	24	KY305080.1	0.120967742
Camarosporula persooniae	93	24	JF770449.1	0.120967742
109A77714	95	22	JX389420.1	0.110887097
Paraconiothvrium brasiliense	97	19	KM100720.1	0.095766129
Phialophora intermedia	96	18	JO766431.1	0.090725806
Acalium albonigrescens	97	18	NR146258.1	0.090725806
Microascus hvalinus	97	18	KX923871.1	0.090725806
Marasmiceae spp	96	17	IF691144 1	0.085685484
Punctularia subhenatica	99	17	KP8145591	0.085685484
Asperoilius iensenii	100	17	LN898704 1	0.085685484
Ganoderma australe	99	16	kU569545 1	0.080645161
44- 2966	95	16	FI60971 1	0.080645161
Hypomyces aurantius	100	15	AB591044 1	0.075604839
Filobasidium chernovii	99	14	KY514746 1	0.070564516
Cenhalotrichiella nenicillata	83	13	K 1869166 1	0.065524194
Microascus cirrosus	97	13	LN850782 1	0.065524194
Ilvonectria spp	100	12	KT270187 1	0.060483871
Penicilium citreosulfuratum	98	11	KY7860791	0.055443548
Hortaea werneckii	100	11	KU882134 1	0.055443548
Colletotrichum gloesporioides	93	9	IX669447 1	0.045362903
Microascus senegalensis	98	ģ	K X 923932 1	0.045362903
Wallemia muriae	97	ģ	KX9118601	0.045362903
Conrinonsis narcotica	91	8	FM163180.1	0.040322581
Neogymnmyces demonbreunii	97	8	IN038187 1	0.040322581
Phlebionsis spn	84	7	K 1832027 1	0.0352822581
Copringllus radians	07	6	KU761146 1	0.030241035
Rhodontura bacarum	99	6	KV104725.1	0.030241935
Stoccharinum spp	96	5	KM2796191	0.025201613
Hunhodontia anachariansis	08	5	KV857707 1	0.025201015
Passalora psaudotithoniaa	100	1	NP137608 1	0.02016120
Ponicilium angulara	08	4	NP 121272 1	0.02010129
Aspendillus agninus	98	4	L C220002 1	0.02010129
Asperginus cuninus Chaotosphaowia myvioaama	97	4	IC230093.1 IE240252.1	0.02010129
Cladonhialonhora chastosnira	03	3	FU127222 1	0.02010129
Oidiodonduon ann	04	3	EU137355.1 IV270625.1	0.015120908
Exophiala angulospora	94	3	VD0001601	0.015120908
Didumosphawia spp	02	2	KK909109.1 V V065721.1	0.013120908
OTU E224	92	2	ME076429 1	0.010080045
Dhialoconhala dimounteene	07	2	WIF9/0430.1	0.010080045
1 nuiocepnuiu aimorphospora Staccharinum albafibuilla	77 05	2	KD401392.1	0.010080043
Chaotogphagwig spp	95 100	2	AV618225 1	0.010080045
University Sprideria Sprideria	100	2	AI016223.1 KU075400.1	0.010080045
Chaetomium alabasum	100	2	ME682400 1	0.010080043
Exophiala halorhilia	20 100	ے 1	ND 111200 1	0.010060043
Елорніана наюрніна	100	1	INK111028.1	0.005040323

Results

The first bat of the *M. velifer* species we collected had ulcerative lesions of a round and irregular shape in the dactylo-, plagio-, and uropatagium (Plate III, Fig. 1). The specimen was fluorescence-negative; on microscopic examination, the stratum corneum was thickened by parallel sheets of anucleated keratin (hyperkeratosis). Within some hair follicles, oval amphophilic hyphae of 6–9 nm in diameter were observed (Plate III, Fig. 2).

The group of 12 bats were PCR-positive for the *Debaryomyces* genus. Histopathological analysis of all bats in the second group revealed severe lesions, such as periadnexal pyogranulomatous dermatitis, the presence of intralesional conidia and hyperkeratosis, orthokeratosis with the presence of hyphae in the form of clusters (Plate III, Fig. 2). Nine specimens presented an inflammatory infiltrate composed of lymphocytes and plasma cells below the dermis and around the cutaneous annexes. For some fungal pathogens, the normal reaction of a healthy individual to their colonization may be mediated by lymphocytes and cytokines (Romani 2004).

The phylogenetic analysis revealed that the sequence obtained from the amplification with the primers DEB-18S-RW and DEB-18S-RW was grouped in a cluster with the ITS sequences of *Debaryomyces* reported in the GenBank, clearly separating it from the rest of the genera of pathogenic fungi that affect bats. In addition, the sequence obtained shared 100% identity with *D. castelli, D. prosopidis, D. renaii, D. psychrosporus, D. vindobonensis, D. maramus, D. fabryi, D. hansenii* and *D. courdetii* (Plate IV, Fig. 3). The sequence with the highest number of readings (17738) showed a 100% similarity with the ITS region of *Debaryomyces* spp. (KM091320.1).

Discussion

The genus *Debaryomyces* is characterized by presence in a great variety of soils; some species of this genus have already been identified as human pathogens. *Debaryomyces hansenii* has been the most studied of these, being related to the contamination of intravenous catheters (Desnos-Oliver et al. 2008), causing bone infections. *Debaryomyces kloeckeri* has been isolated in abscesses and in urinary and dermatological infections, and finally *D. emphysematosis* has been isolated from patients with bronchitis (Wong et al. 1982).

The lesions observed in specimens such as periadnexal pyogranulomatous dermatitis, orthokeratosis hyperkeratosis, the presence of conidia and of an inflammatory infiltrate and plasma cells in the cutaneous adnexa can have a severe impact on the mobility of bats. Therefore, these lesions should be considered in the differential diagnosis of bat skin diseases such as white-nose syndrome. *Debaryomyces* spp. had been reported in only one other individual of *M. velifer* in Texas, United States (Lorch et al. 2015), and this is the first time that its presence in bats in a neotropical region has been recorded.

The implications of these findings can be severe for the conservation of Mexican bats. Though there are no demographic studies on the site, the concern is that other bats species could become infected by sharing shelters with sick individuals. To which is added the mobility and migration that different bat species can have, allowing the fungus to disperse. Although massive deaths due to fungal infections have not been reported in Mexico, the lesions shown on the wing membranes could have a severe impact on the mobility, hydration, thermoregulation and gas exchange of affected individuals. *Debaryomyces* spp. have not been evaluated at the level of epidemiological behaviour, so it is necessary to evaluate the populations infected with this pathogen to document the impact it may have on neotropical bat populations.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) México. This work was supported by the Secretaría de Investigación y Posgrado at the Instituto Politécnico Nacional (SIP: 20180158). Furthermore, M. B-S thanks the Comisión de Operación y Fomento a las Actividades Académicas (COFAA) and the Programa de Estímulos al Desempeño a la Investigación (EDI) at the Instituto Politécnico Nacional for their support, as well as the Sistema Nacional de Investigadores (SNI) for its recognition and support.

References

- Barnard SM 2009: Bats in captivity. Volume 1. Biological and Medical Aspects. Logos Press, E.U.A. 600 p. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Stone WB 2009: Bat white-nose
- syndrome: an emerging fungal pathogen? Science **323**: 227-227
- Cryan PM, Meteyer CU, Boyles JG, Blehert DS 2010: Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol 8: 1-8
- Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier JC, Dromer F 2008: Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J Clin Microbiol 46: 3237-3242
- Lorch JM, Minnis AM, Meteyer CU, Redell JA, Paul J, Kaarakka HM, Muller LK, Lindner DL, Verant ML, Blehert DS 2015: The fungus *Trichophyton redellii* sp. nov. causes skin infections that resemble white-nose syndrome of hibernating bats. J Wildl Dis 51: 36-47
- Ramírez-Pulido J, González-Ruiz N, Gardner AL, Arroyo-Cabrales J 2014: List of recent land mammals from Mexico. Texas Tech University Natural Science Research Laboratory Special publications, Texas, 76 p.
- Reichard JD, Kunz TH 2009: White-nose syndrome inflicts lasting injuries to the wings of little brown myotis (*Myotis lucifugus*). Acta Chirop **11**: 457-464
- Romani L 2004. Immunity to fungal infections. Nat Rev Immunol 4: 1-23
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S 2011: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol and Evol 28: 2731-2739
- Turner GG, Meteyer CU, Barton H, Gumbs JF, Reeder DM, Overton B, Bandouchova H, Bartonička T, Martínková N, Pikula J, Zukal J, Blehert DS 2014: Non-lethal screening of bat wing skin using UV fluorescence to detect lesions indicating white-nose syndrome. J Wildl Dis 50: 566-573
- Wong B, KiehnTE, Edwards F, Bernard EM, Marcove RC, De Harven E, Armstrong D 1982: Bone infection caused by *Debaryomyces hansenii* in a normal host: a case report. J Clin Microb 16: 545-548
- Young JM, Weyrich LS, Cooper A 2014: Forensic soil DNA analysis using high-throughput sequencing: A comparison of four molecular markers. Foren Sci Intern Genetics **13**: 176-184

Fig. 1. Myotis velifer with ulcerative lesions, some of round shape and others of irregular form in dactylo-, plagioand uropatagium.

Fig. 2. The increased thickness of stratum corneum contains parallel sheets of anucleated keratin (hyperkeratosis); the presence of oval amphiphilic hyphae measuring 6–9 nm is observed within some hair follicles.

0.1

Fig. 3. Phylogenetic analysis: the referred sequence is compared to ITS databank sequences of the genus *Debaryomyces* and the mycotic agents reported in bats; the sequence is grouped in a clade with nine species of the genus *Debaryomyces*.