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Abstract
The aims of this study were to investigate the effects of three different concentrations of 

the Pu-erh tea extract (PTE) on the contractile activity of the isolated mouse duodenum and 
explore their mechanism. The contraction amplitude and frequency of the isolated mouse 
duodenum were inhibited by all three concentrations of PTE. The high-concentration PTE 
significantly (P < 0.01) inhibited the promotion effects of acetylcholine chloride or BayK8644 
on the amplitude and frequency of intestinal contraction, which were comparable to those of 
atropine sulphate and verapamil hydrochloride, respectively. The results of UV-Vis and ELISA 
showed that the content of methionine-enkephalin (Met-ENK) in the PTE-treated groups was 
decreased to varying degrees; contrarily, the activities of tyrosine hydroxylase (TH), total 
nitric oxide synthase, and the content of nitric oxide were increased to different degrees. The 
results suggest that PTE can inhibit the contraction of the isolated mouse duodenum, and the 
mechanism of action is that PTE can not only inhibit the signal transduction pathways of 
AC-cAMP-PKA and PLC-IP3-Ca2+, but also the Ca2+ signal systems mediated by G protein-
coupled M receptors through the myenteric plexus. By reducing the release of Met-ENK from 
the motor neurons of the myenteric plexus, the GTP-cAMP-PKK signalling pathway and 
the Ca2+ signalling system mediated by G protein-coupled delta receptors were inhibited. By 
increasing the TH activity of the motor neurons in the myenteric plexus, the norepinephrine 
content was increased, thereby the AC-cAMP-PKA signal transduction pathway mediated by 
G protein-coupled β receptors was activated. This study increases knowledge regarding the 
medicinal value of the Pu-erh tea.

Neurotransmitters, signal pathways, myenteric plexus, Ca2+

Pu-erh tea (Camellia sinensis var. assamica) is a woody plant of the Camellia family, 
which is mainly produced in areas with Pu’er, Menghai, and Gengma in the Yunnan 
Province as the core (Jeong et al. 2020). Studies have shown that the main components 
of Pu-erh tea include tea pigments, tea polyphenols, tea polysaccharides, theanine, 
alkaloids, flavonoids, etc. (Lv et al. 2016). Pu-erh tea is a kind of post-fermented tea, 
which can not only protect the gastric mucosa (Yang et al. 2018), but also has significant 
pharmacological anti-cancer (Xie et al. 2017), antioxidant (Choi et al. 2019), anti-
arteriosclerosis (Xiao et al. 2019), bacteria-inhibiting (Ewelina et al. 2019), dietetic 
and weight-loss (Xia et al. 2019; Lu et al. 2019), cognitive impairment (Jeong et al. 
2020), and anti-inflammatory (Huang  et al. 2020) effects. It has been reported that plant 
extracts can inhibit the contraction of the small intestine (An et al. 2018; Nigusse et al. 
2019), and the preliminary experiments of our research group have found that the Pu-erh 
tea extract (PTE) can also inhibit duodenal contraction. In view of the fact that the effect 
of the PTE on duodenum contraction has not been reported yet, this experiment intends 
to study the effect and mechanism of the PTE on isolated duodenal contraction in mice, 
so as to provide new ideas for the research and development of new drugs, as well as 
theoretical basis for the treatment of gastrointestinal motility disorders and new clinical 
uses of Pu-erh tea.
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Materials and Methods
Animals

A total of 70 healthy adult Kunming mice (n = 35 for each sex), weighing 18–22 g, were provided by Hunan 
Slake Jingda Experimental Animals Co., Ltd (production license number SCXK (Xiang) 2019-0004, Changsha, 
Hunan, China). All mice were housed in conventional cages with free access to standard food and water. The care 
and use of mice were approved by the Scientific Ethics Committee for Experiments on Animals of the Chongqing 
Three Gorges University. All applicable international, national, and institutional guidelines for the care and use 
of animals were followed. All of the protocols on living animals used in this study came from Hunan Slake 
Jingda Experimental Animals Co., Ltd (production license number SCXK (Xiang) 2019-0004, Changsha, Hunan, 
China). Moreover, all efforts were made to minimize the suffering of the mice.

Chemicals and reagents
The Pu-erh tea used was prepared tea that had been purchased from the Anning Bay Tea Industry Co., 

Ltd. (Anning, Yunnan, China). Protease inhibitors and Bay K8644 were obtained from Sigma Chemical Co. 
(St. Louis, MO, USA). Acetylcholine chloride (ACh), atropine sulphate (ATPs) and verapamil hydrochloride 
(VRP) were purchased from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Commercial kits used 
for the determination of total nitric oxide synthase (TNOS), nitric oxide (NO), Coomassie brilliant blue protein 
were purchased from the Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Methionine-enkephalin 
(Met-ENK) ELISA kit was from Shanghai Jingkang Bioengineering Co., Ltd. (Shanghai, China). Tyrosine 
hydroxylase (TH) ELISA kit was from Prosci Co., Poway, CA, USA. All reagents used in preparation of Locke’s 
solution (KC1 0.42 g, NaC1 9 g, NaHC03 0.2 g, CaC12 0.24 g, glucose 1.0 g, and distilled water 1000 ml) were 
analytically pure, purchased from the Sinopharm Chemical Reagent Co., Ltd.

Preparation of the PTE
The preparation procedure of the PTE was improved according to the method of Wang et al. (2016). Pu-erh 

tea leaves (6 g, passed through a 40-mesh sieve) were accurately weighed and soaked in boiling distilled water 
(100 °C) three times, 30 min each time. The filtrate was combined and concentrated to 100 ml, and a high 
concentration of the PTE (60 mg/ml) was obtained. Then after diluting two times, medium and low concentrations 
of 30 and 15 mg/ml, respectively, were obtained.

Preparation of isolated mouse duodenal smooth muscle and recording its contractile activity
The mice were sacrificed by cervical dislocation. The abdominal cavity was opened quickly, the residual 

duodenal contents were expelled to the jejunum, and a 1–2 cm long duodenal segment was taken after separating 
the mesentery along the edge. The intestinal section was washed repeatedly in Locke’s solution and then 
both ends of the section were ligated with silk threads. The lower end of the intestinal segment was fixed on 
an L-shaped hook at the bottom of the test tube in the constant temperature smooth muscle trough (Chengdu 
Taimeng Software Co., Ltd., Chengdu, China). The upper end was connected to the elastic beam of the tension 
transducer (Chengdu Taimeng Software Co., Ltd., Chengdu, China) by silk thread, and 1–2 bubbles were pumped 
into the bottom of the test tube every second through the built-in air pump in the constant temperature smooth 
muscle trough. The contraction curve of the intestinal segment was collected and recorded by the BL-420F 
biological signal acquisition and processing system (Chengdu Taimeng Software Co., Ltd., Chengdu, China). 
After 20 min of stabilization, the experiment was started. The recorded indicators included the contraction 
amplitude and frequency. 

In the experiment, the low-concentration PTE was added into the test tube, after being recorded and observed, 
it was rinsed 3 times with 37 °C Locke’s solution. After the contraction curve was restored, the medium and 
high-concentration PTEs were added in the same way. They were recorded and observed for 15 min with the 
contraction curve before adding the medicine as a control. The effects of different concentrations of the PTE on 
the contraction amplitude and frequency of the isolated mouse duodenum were recorded and analysed, and the 
inhibition rates were calculated as follows:

Inhibition rate (%) = mean value before and after dosing/mean value before dosing × 100%
In order to explore the mechanism of the PTE’s effects on duodenal smooth muscle contraction, the following 

experiments were designed by the methods described below.

Acetylcholine chloride induction experiment
Acetylcholine chloride (0.1 μmol/l) was added into the test tube when the duodenal contraction curve of mice 

was stable, and the high-concentration PTE (60 mg/ml) was added after 5 min. During this period, the changes 
of the isolated duodenal contraction frequency and amplitude were observed and recorded. Atropine sulphate 
(1 μmol/l) was used as a positive control.

Bay K8644 induction experiment
When the intestinal segment contraction curve of mice was stable, CaCl2 (0.1 μmol/l) was added into the test 

tube. The high-concentration PTE was added after 5 min and changes in the contraction frequency and amplitude 
of the isolated duodenum in mice were observed and recorded. Verapamil hydrochloride (0.1 μmol/l) was used 
as a positive control.
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Determination of the TNOS activity and NO content
A total of 40 mice were randomly divided into 4 groups: the control group and the PTE-treated groups of the 

low, medium, and high concentrations. The isolated duodenal smooth muscle specimens of mice in each group 
were prepared and soaked with Locke’s solution and low, medium, and high concentrations of PTE. The intestinal 
segments were cut into pieces after 15 min. Parts of the duodenal tissues were placed in 9-fold pre-cooled saline, 
and a 10% tissue homogenate was prepared by ice bath homogenisation for 10 min. After centrifugation at 3000 g 
for 10 min, the supernatant was taken, the activity of TNOS and the contents of NO and proteins in each group 
were determined by the respective detection kits UV-Vis (Aoyi Instruments Shanghai Co., Ltd., Shanghai, China).

Preparation of duodenal tissues for enzyme-linked immunosorbent assay (ELISA)
The isolated duodenum segments in each group were washed with precooled phosphate buffered saline (PBS, 

0.01 M, pH = 7.4), then the tissues were cut up after weighing. The cut tissues and PBS of corresponding volume 
(based on the weight volume ratio of 1:9, it was recommended to add protease inhibitor into PBS) were added 
into a glass homogenizer which was grounded on ice. Finally, the homogenate was centrifuged at 5000 g for 
5 min and supernatant was detected.

ELISA
The reaction programs of ELISA were carried out according to the TH and Met-ENK ELISA kit instructions. 

Finally, 50 μl termination solution was added into each hole of a 96 well microtitre plate for 15 min, and the 
optical density (OD) values were measured at the wavelength of 450 nm using an iMark Microplate Reader 
(Bio-Rad, Hercules, California, USA). Then, the OD values were substituted into the linear regression equation, 
the TH activity and the Met-ENK content of the samples were calculated.

Statistical analysis
The program IBM SPSS Statistics 23.0 (SPSS Inc., Chicago, IL, USA) was used for experimental data 

processing. The results were expressed as the mean plus or minus standard deviation (SD). Paired t-test was used 
to compare the differences between the two groups before and after administration. One-way ANOVA was used 
to compare the differences between the experimental and control groups, and Dunnett’s t-test was used for further 
comparisons between groups. Differences were regarded as significant at P < 0.05, highly significant at P < 0.01.

Results
Effects of the PTE on the contraction amplitude of isolated mouse duodenum

As shown in Table 1 and Fig. 1, compared to the values before administration, the three 
doses of PTE had an inhibitory effect on the contraction amplitude of the isolated mouse 
duodenum, and the difference was significant in the low-concentration group (P < 0.05) and 
highly significant in the medium- and high-concentration groups (P < 0.01). The inhibition 
rate (23.68%, 33.33%, and 41.67, respectively) was gradually increased with the increase 
of the PTE concentration, which showed a certain dose-dependent effect.

Fig. 1. Effects of the Pu-erh tea extract (PTE) on the contraction of the isolated mouse duodenum

A

B

C
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Effects of the PTE on the contractile frequency of isolated duodenum in mice
Compared to the values before administration, all three PTE-treated groups (15, 30, 

60 mg·ml-1) had an inhibitory effect on the contractile frequency of the isolated duodenum 
in mice, and the inhibitory rate (22.01%, 29.94%, and 46.64 individually) were gradually 
increased with the increase of the PTE concentration, which showed a significant dose-
dependent effect (Table 2, Fig. 1). The difference was significant in the low-dose group 
(P < 0.05), and very significant in the medium- and high-dose groups (P < 0.01). 

Effects of the PTE on the contractile amplitude and frequency of isolated 
mouse duodenum induced by ACh

As shown in Table 3 and Fig. 2, ACh alone significantly increased the contractile 
amplitude (0.54 ± 0.05) and frequency (58.91 ± 5.39) of the isolated duodenum in mice 
compared to the values before administration (P < 0.01). After adding the PTE (60 mg/ml), 
the contractile amplitude (0.40 ± 0.03) and frequency (45.26 ± 3.08) were significantly 
reduced, the effect was equivalent to that of ATPs (0.38 ± 0.04 and 43.51 ± 3.29, 
respectively), and the difference was highly significant compared to ACh (P < 0.01).

Table 1. Effects of the PTE on the contractile amplitude of isolated mouse duodenum (mean ± SD, n = 10).

Group
 Concentrations Contractile amplitude (g)  

Inhibition rate (%) (mg·ml -1) Before administration After administration
Low PTE 15 0.38 ± 0.06 0.29 ± 0.03* 23.68
Intermediate PTE 30 0.36 ± 0.03 0.24 ± 0.02** 33. 33
High PTE 60 0.36 ± 0.02 0.21 ± 0.04** 41.67

PTE - Pu-erh tea extract
*P < 0.05, **P < 0.01 compared to the values with before administration

Table 2. Effects of the PTE on the contractile frequency of isolated mouse duodenum (mean ± SD, n = 10)

Group
 Concentrations Contraction frequency (times·min-1) 

Inhibition rate (%) (mg·ml -1) Before administration After administration
Low PTE 15 40.25 ± 5.06 31.39 ± 2.84* 22.01
Intermediate PTE 30 40.18 ± 4.73 28.15 ± 2.52** 29.94
High PTE 60 42.09 ± 6.17 22.46 ± 1.65** 46.64

PTE - Pu-erh tea extract
*P < 0.05, **P < 0.01 compared to the values with before administration

Table 3. Effects of the PTE on the contractile amplitude and frequency of the isolated mouse duodenum induced 
by ACh (mean ± SD, n = 10).

 Before administration ACh High PTE ATPs positive control
Contractile amplitude (g) 0.36 ± 0.03 0.54 ± 0.05** 0.40 ± 0.03## 0.38 ± 0.04##

Contraction frequency
(times·min-1) 40.36 ± 5.12 58.91 ± 5.39** 45.26 ± 3.08## 43.51 ± 3.29##

PTE - Pu-erh tea extract; ACh - acetylcholine chloride; ATPs: atropine sulphate
** indicates comparison before and after administration, P < 0.01; ## compared to the intervention of ACh, P < 0.01

Fig. 2. Effects of the Pu-erh tea extract (PTE) on the contraction of the isolated mouse duodenum by ACh
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Effects of the PTE on the contraction amplitude and frequency of isolated 
duodenum in mice induced by Bay k8644

As shown in Table 4 and Fig. 3, Bay K8644 alone significantly increased the contraction 
amplitude (0.58 ± 0.06) and frequency (61.37 ± 5.41) of the isolated duodenum in mice 
compared to the values before administration (P < 0.01). After adding the PTE (60 mg/ml), 
the contraction amplitude (0.41 ± 0.04) and frequency (46.05 ± 3.21) were significantly 
decreased (P < 0.01), and the effect was similar to that of VRP (0.39 ± 0.03 and 44.37 ± 4.08, 
respectively).

Effects of the PTE on the activities of TH, TNOS and the contents of NO and 
Met-ENK in isolated duodenum in mice

Compared to the control group, the Met-ENK content in the three PTE-treated groups was 
reduced, and the difference was highly significant in the medium- and high-concentration 
groups (P < 0.01), but non-significant in the low-concentration group (P > 0.05). The NO 
content and the activities of TH, TNOS in the three PTE-treated groups were higher than 
those in the control group. The differences were highly significant in the medium- and 
high-concentration groups (P < 0.01) and significant for the TNOS activity and the NO 
content in the low-concentration group (P < 0.05) but the difference for the TH activity in 
the low-concentration group was non-significant (P > 0.05) (Table 5).

Fig. 3. Effects of the Pu-erh tea extract (PTE) on the contraction of the isolated mouse duodenum by Bay k8644

Table 4. Effects of the PTE on the contractile amplitude and frequency of the isolated duodenum in mice induced 
by Bay k8644 (mean ± SD, n = 10).

 Before administration Bay k8644 High PTE VRP positive control
Contractile amplitude (g) 0.36 ± 0.03 0.58 ± 0.06** 0.41 ± 0.04## 0.39 ± 0.03##

Contraction frequency
(times·min-1) 40.28 ± 5.20 61.37 ± 5.41** 46.05 ± 3.21## 44.37 ± 4.08##

PTE - Pu-erh tea extract; VRP - verapamil hydrochloride
** indicates comparison before and after administration, P < 0.01; ## compared to the intervention of Bay k8644, P < 0.01

Table 5. Effects of the PTE on the activities of TH and TNOS and the contents of NO and Met-ENK in the isolated 
mouse duodenum (mean ± SD, n = 10).

Group
 Concentration TH TNOS/ 

NO (umol/g)
 Met-ENK/

 (mg·ml -1) (pg·ml -1) (U/mg)  (pg·ml -1)
Control group — 643.19 ± 23.05 1.56 ± 0.14 2.08 ± 0.16 7.64 ± 0.69
Low PTE 15 654. 61 ± 51.47 1.95 ± 0.21* 2.34 ± 0.22* 7.31 ± 0.82
Intermediate PTE 30 950.85 ± 33.42** 2.26 ± 0.12** 2.95 ± 0.30** 5.83 ± 0.48**

High PTE 60 1182.26 ± 83.41** 2.21 ± 0.10** 2.83 ± 0.24** 4.57 ± 0.35**

PTE - Pu-erh tea extract; TH - tyrosine hydroxylase; TNOS - total nitric oxide synthetase; NO - nitric oxide; 
Met-ENK - methionine-enkephalin
* significant difference (P < 0.05), ** highly significant difference (P < 0.01) compared to the control groups 
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Discussion

Similar to skeletal muscle, the duodenal smooth muscle contraction is also excited-
contracted coupling triggered by the sarcolemmal action potential, and the trigger factor 
is also Ca2+. The difference is that there are two pathways of electrical-mechanical 
coupling and drug-mechanical coupling in the regulation of Ca2+ concentration (Wang 
2018). Electrical-mechanical coupling causes the L-type calcium channels (ICa-L) in the 
muscle membrane to release extracellular Ca2+ into the cytoplasm, and Ca2+ binds to 
calmodulin (CaM) to form a complex, which triggers myofilament sliding and causes the 
duodenal smooth muscle contraction. Drug-mechanical coupling is caused by exogenous 
drugs that generate inositol triphosphate (IP3) by activating the G protein-coupled 
receptor phospholipase C (PLC)-IP3 signalling pathway and eventually mediate the 
release of Ca2+ into the cytoplasm from the sarcoplasmic reticulum. The results of this 
study showed that the three PTE-treated groups could inhibit the contraction frequency 
and amplitude of the isolated duodenum in mice, which may be because: 1) The PTE can 
inhibit extracellular Ca2+ influx and Ca2+-CaM signalling pathway by inhibiting ICa-L of 
the muscle membrane; 2) The PTE can inhibit the G protein-coupled receptor-mediated 
PLC-IP3-Ca2+ signal transduction pathway; 3) The PTE can inhibit the release of 
intracellular Ca2+ (Wang  2018). The duodenal activity is influenced by neurological and 
humoral factors. Humoral factors include many kinds of ion channels and receptors on 
the cell membrane of the duodenal smooth muscle. When messenger molecules activate 
ion channels or when neurotransmitters and exogenous drugs combine with receptors 
on the membranes, the signal transduction pathway of smooth muscle cells will change 
and thus regulate its movement. The nerve factors include the regulation of the external 
nerves (sympathetic and parasympathetic) and the enteric nervous system. Although the 
external nerves were lost in the isolated duodenum of the mice, the enteric nervous 
system still existed (Sanders 1996). The enteric nervous system is composed of two 
layers of nerve structures in the gastrointestinal tract wall, containing a large number 
of neurons and nerve fibres, which can be divided into the myenteric plexus and the 
submucosal nerve plexus. The submucosal nerve plexus mainly regulates the functions 
of the epithelial cells and glandular cells, whereas the myenteric plexus between the 
circular and longitudinal muscles mainly controls the activities of smooth muscles 
(Furness 2016). The smooth muscle movement of the duodenum is mainly regulated 
and controlled by the myenteric plexus. The neurons that make up the myenteric 
plexus regulate the duodenal movement by releasing different neurotransmitters. These 
neurotransmitters can be divided into two categories. Excitatory neurotransmitters 
such as enkephalin (ENK), Ach, and 5-hydroxytryptamine can promote the duodenal 
movement (Wang et al. 2019), and inhibitory neurotransmitters such as norepinephrine 
(NE), adrenaline, NO and secretin can inhibit it (Furness 2016).

Acetylcholine chloride is an excitatory neurotransmitter that is involved in 
regulating the duodenal motility. When binding to the G protein-coupled M receptor 
on the duodenal muscle membrane, Ach activates adenylate cyclase (AC) to increase 
intracellular concentration of cyclic adenosine monophosphate (cAMP), activates 
protein kinase A (PKA) and ICa-L (Huang et al. 2019), which increases the extracellular 
Ca2+ influx, resulting in the enhancement of the duodenal smooth muscle contraction 
(Wallace et al. 2013). Bay K8644 is an activator of ICa-L, which can promote a large 
amount of extracellular Ca2+ into the cells and enhance the contraction of the duodenal 
smooth muscle (Zhang  et al. 2013). When the PTE was added, the contraction effect 
was significantly inhibited (P < 0.01). Therefore, it is inferred that the PTE can block 
ICa-L, inhibit the external Ca2+ influx induced by the Bay K8644, and then inhibit the 
contraction of the isolated mice duodenum. The results showed that the PTE could 
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significantly (P < 0.01) inhibit the promotion effects of Ach or BayK8644 on the 
amplitude and frequency of the intestinal contraction, and the inhibition effects were 
comparable to those of ATPs and VRP, which were the commonly used M-choline 
receptor blockers and ICa-L blockers, respectively. Therefore, it is suggested that the 
PTE can not only inhibit the signal transduction pathways of AC-cAMP-PKA and 
PLC-IP3-Ca2+, but also the Ca2+ signal systems (such as, inhibit ICa-L of the muscle 
membrane and then inhibit the Ca2+-CaM signalling pathway) mediated by G protein-
coupled M receptors. 

Enkephalin is also an excitatory neurotransmitter that is involved in regulating the 
duodenal motility, which belongs to the endogenous opioid neuropeptide family, mainly 
including Leu-ENK and Met-ENK. Our previous studies have shown that ENK is the 
endogenous ligand of the delta opioid receptor (Sha et al. 2013). Enkephalin can activate 
guanosine triphosphate (GTP) binding proteins on the duodenal muscle membrane 
by binding to the G protein-coupled delta receptor (Chakrabarti et al. 1998), which 
increases the intracellular concentration of cAMP and activates the Ca2+-dependent 
protein kinase C (PKC) and protein kinase K (PKK) (Heagy et al. 1999), and then 
activates the Ca2+ signalling systems (Martin and Gabrilovac 1999), resulting in an 
increase of the duodenal smooth muscle contraction. Tyrosine hydroxylase is a rate-
limiting enzyme for NE synthesis, which can be used as a marker of NE neuronal activity. 
The increase of TH expression directly leads to the increase of NE synthesis (Armaz 
et al. 2019). Norepinephrine is an adrenergic beta receptor agonist, which is an inhibitory 
neurotransmitter of the duodenal motility. It can relax the duodenal smooth muscle by 
activating the G protein-coupled β receptor-mediated AC-cAMP-PKA signal transduction 
pathway. Nitric oxide synthase (NOS) is a synthetase of NO. When binding with Fe2+ in 
haemoglobin, NO activates guanylate cyclase (GC) to increase the concentration of cyclic 
guanosine phosphate (cGMP) (Ignarro et al. 1982), activates protein kinase G (PKG) 
and causes the phosphorylation of related proteins, which decreases the intracellular Ca2+ 
concentration and inhibits the contraction of the duodenal smooth muscle (Melamed 
et al. 1976). The results of UV-Vis and ELISA showed that compared to the control 
group, the content of Met-ENK in the isolated duodenal myenteric plexus of the three 
PTE-treated mice was decreased to varying degrees, and contrarily, the activities of TH, 
TNOS, and the content of NO were increased to different degrees. The results suggested 
that the PTE may affect the duodenal motility by regulating the activity of motoneurons 
in the duodenal myenteric plexus. The PTE can inhibit the GTP-cAMP-(PKK or PKC) 
signalling pathway and the Ca2+ signalling system mediated by G protein-coupled delta 
receptors by reducing the content of Met-ENK, thereby inhibiting the isolated duodenal 
contraction. It can increase NE by increasing the TH activity, and then activate the 
AC-cAMP-PKA signal transduction pathway mediated by G protein-coupled β receptors, 
thereby relaxing the isolated duodenal smooth muscle. It can promote the synthesis of 
gaseous neurotransmitter NO by promoting the release of NOS from the motor neurons in the 
myenteric plexus, thus activating the enzyme-linked receptor-mediated GC-cGMP-PKG 
signal transduction pathway, finally leading to weakening of the isolated duodenal 
contraction. 

Based on the results of this study, it can be seen that the PTE can inhibit the contraction 
of the isolated duodenum in mice through the myenteric plexus. The mechanism of 
inhibition is related to the regulations of the release of different neurotransmitters and the 
transductions of different signal pathways. It can be concluded that the PTE can inhibit the 
gastrointestinal spasm, relieve gastrointestinal pain, resist severe peristalsis of an injured 
intestine, and is effective in the treatment of gastrointestinal motility diseases such as 
diarrhoea, abdominal pain, and gastrointestinal spasm. The results of this study increase 
knowledge regarding the medicinal value of Pu-erh tea.
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