
A review of the effects of metallic nanoparticles on fish

Hana Čaloudová, Jana Čaloudová, Zdeňka Svobodová

University of Veterinary Sciences Brno, Faculty of Veterinary Hygiene and Ecology,
Department of Animal Protection and Welfare and Public Veterinary Medicine, Brno, Czech Republic

Received January 16, 2021
Accepted August 31, 2021

Abstract

Many important discoveries have been made in the field of nanotechnology in the last 
40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety 
concerns have warranted extensive research of nanotoxicity. This paper offers information about 
the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. 
It further summarizes details about parameters that dictate the toxicity of nanoparticles and 
discusses the general/common mechanisms of their toxicity. This review also focuses on fish 
exposure to nanoparticles, including the possibility of trophic transport through the food chain. 
Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and 
titanium dioxide, is further elaborated on.

Toxicity, environment, silver, gold, titanium dioxide

The dawn of nanoscience and nanotechnology is connected to the invention of the 
Scanning Tunneling Microscope (STM) in 1981, which allowed scientists to observe 
individual atoms for the first time (Binnig et al. 1982). Since then, breakthrough 
discoveries have been made in almost every scientific field, including physics, chemistry, 
biology, engineering, or medicine.  The basic definition states that nanoparticles (NPs) are 
particles of a size between 1 and 100 nm (ISO 2011). The size range is restricted arbitrarily, 
there is no clear cutoff in the properties of particles at 100 nm (Geertsma et al. 2015). 
Moreover, NPs are usually not entirely round, homogenous, unbound particles. Those 
aspects are taken into consideration by the Commission Recommendation on the definition 
of nanomaterial (2011/696/EU) which states that nanoparticles are not only particles in an 
unbound state but also aggregates or agglomerates where for 50% or more of the particles 
in the number size distribution, one or more external dimensions are in the size range of 
1–100 nm. In specific cases, this threshold can even be lowered to 1%. 

This might seem like a completely new area of materials that humans have never 
encountered, but the opposite is true. Nanoparticles were contained in a colloidal solution 
called “soluble gold” which was used for medicinal purposes more than 2000 years ago. 
During the Roman Empire and later in the Middle Ages, Au and Ag NPs were used to stain 
coloured glass (Horikoshi and Serpone 2013). Furthermore, NPs are not only human-
made but also arise from natural processes, such as the photobiogeochemical reaction 
leading to the formation of Ag NPs in the aqueous environment by reducing silver ions 
with organic matter (Hou et al. 2013). Nanoparticles are also formed during combustion 
and are present as ultra-fine particles in the atmosphere. They are also formed by cells 
as products of bacterial metabolism. Due to this long-term presence of nanomaterials in 
ecosystems, it can be assumed that biological systems have established mechanisms at the 
level of cells and organisms to deal with their presence (Monteiro-Riviere and Tran 
2007). 

ACTA VET. BRNO 2021, 90: 331–347; https://doi.org/10.2754/avb202190030331

Address for correspondence:
Hana Čaloudová
Department of Animal Protection and Welfare and Public Veterinary Medicine
Faculty of Veterinary Hygiene and Ecology
University of Veterinary Sciences Brno
Palackého třída 1946/1, 612 42 Brno, Czech Republic

Telephone: +420 541 562 788
E-mail: H17345@vfu.cz 
http://actavet.vfu.cz/



332

Yet, the ever-widening range of products and applications of NPs is associated with 
the increasing frequency and quantity of their unintentional release into the environment. 
The release may occur at all stages: during the manufacturing, use, and disposal of 
NPs-containing products. This brings uncertainty about possible environmental and health 
risks, especially in relation to substances such as metals that are a well-known current 
threat to the environment (Kovářík et al. 2020; Svoboda et al. 2020). Currently, metallic 
NPs represent the second largest market share of all NPs with an estimated value of 
16 billion USD in the year 2020, and is projected to more than double the market value by 
2027, growing at a compound anual growth rate of 14.2%. The highest growth is predicted 
for the pharmaceutical and healthcare sector, followed by electrotechnology and catalyst 
sectors (Global Industry Analysts, Inc. 2020; Grand View Research, Inc. 2020). Therefore, 
this review further focuses predominantly on metallic NPs.

Classification of metallic NPs
Metallic NPs can be divided into four categories based on their composition. The first 

group are pure metal-based NPs, usually comprised of noble metals (Ag, Au, Pt, etc), 
the second group are metal oxide NPs, which can have magnetic (Fe3O4, Fe2O3, etc) 
or semiconductor properties (TiO2, ZnO, etc). The third group are chalcogenide NPs, 
represented by sulphides, selenides, and tellurides (PbS, ZnSe, CdTe). The fourth group are 
doped metal/metal oxide/metal NPs, which combine beneficial properties of both metals 
(Zn-Ag, Pt-Ni, etc) (Khanna et al. 2019; Yaqoob et al. 2020).

The occurrence of metallic NPs in the aquatic environment
The exact volumes of metallic NPs in the environment are not known; only estimates 

of the environmental concentrations of certain NPs are available. Currently, research is 
focused on the use of NPs in pesticides, fertilizers, and water and soil remediation products, 
which could be a significant source of contamination in the future. Mainly carbon NPs, 
metals, and their oxides are investigated (Khot et al. 2012).

The aquatic environment can be contaminated by the direct entry of NPs into water (for 
example during remediation, leaching of NPs during the use of the products, or accidental 
leaks), through emissions from wastewater treatment plants, air deposition, and flushings 
from contaminated soil (Gottschalk et al. 2009; Impellitteri et al. 2013; Gottschalk 
et al. 2015). Landfills are especially significant sources of contamination of ecosystems 
(Gottschalk et al. 2015).

Wastewater treatment plants can remove a significant part of NPs, for example, 97% of Ag 
NPs are removed from the water column into sewage sludge (Impellitteri et al. 2013). The 
methods of handling the sewage sludge differ among countries, in some places, they can be 
applied to the soil for their beneficial high contents of organic matter (Kwak and An 2016).

Application of sewage sludge can be hazardous due to high predicted concentrations 
of NPs, ranging in hundreds to thousands of mg·kg-1 for TiO2 NPs, tens of mg·kg-1 for 
ZnO NPs, and dozens of μg·kg-1 for Ag NPs (Gottschalk et al. 2009; Sun et al. 2014; 
Gottschalk et al. 2015; Sun et al. 2016). According to the predictive models, European 
surface waters contain tens to thousands of ng·l-1 of TiO2 NPs, tens to hundreds of ng·l-1 of 
ZnO NPs, and units to tens of ng·l-1 of Ag NPs (Gottschalk et al. 2009; Sun et al. 2014; 
Gottschalk et al. 2015; Sun et al. 2016; Peters et al. 2018). 

Behaviour and stability of metallic NPs in the aquatic environment
Metallic NPs are not fully soluble in water and therefore models valid for soluble 

chemicals cannot be used to assess their behavior and toxicity. Instead of dissolving, we 
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have to take into consideration the formation of stabilized suspensions. Most metallic NPs 
are hydrophilic and often have low solubility, which can be perceived positively because 
metal ions tend to be their most toxic form (Batley et al. 2013). An example is the silver 
ion Ag+, which is more toxic than silver bound in the form of compounds and Ag0 within 
NPs (Hogstrand and Wood 1998; Ribeiro et al. 2014). The fate of dissolved ions is 
influenced by the composition of the environment, Ag+ in natural waters rapidly forms 
sulphides and chlorides, which are insoluble, have lower toxicity, and are deposited in 
sediments (Kaegi et al. 2013). Sedimentation is another important way of loss of NPs 
from the water column. It is usually preceded by particle aggregation, the extent of which 
depends on pH, the presence of cations, ionic strength, and the size, shape, and charge 
of particles (Batley et al. 2013; Schaumann et al. 2015). The sea and brackish regions 
have high ionic strength, so lower concentrations of NPs can be expected due to rapid 
aggregation in those environments (Pamies et al. 2014; Li et al. 2016).

Both homoaggregation (NPs form aggregates with each other) can occur, or more often 
heteroaggregation, when they bind to naturally occurring colloids, which are present 
in waters in significant concentrations, namely 1–10 mg·l-1. These colloids consist of 
inorganic (e.g. metal oxides and sulphides, amorphous silicon), organic (formed primarily 
by humic substances and fibrous material, which may be polysaccharides and proteins 
formed by microorganisms), and biological components (viruses, bacteria). The fibrous 
material facilitates the aggregation of NPs, while humic substances can stabilize the 
dispersion of NPs by creating a coating that stabilizes the charge of the particle (Batley 
et al. 2013; Kaegi et al. 2013). Nanoparticles can also undergo redox reactions that 
change the chemical properties of the particle surface and can affect its environmental 
behaviour.This is typical for Fe0 which is used for water remediation. Iron particles 
oxidize rapidly in the environment, reducing the pollutant, such as trichloroethylene 
(Liu et al. 2005).

Determining properties of metallic nanoparticles

The toxicity of metallic NPs is dictated by multiple parameters, which must be taken 
into consideration as a complex of information, that includes their chemical composition, 
crystal structure, and purity of the sample, method of synthesis, size, and surface area of the 
nanoparticle (Warheit 2008; Wijnhoven et al. 2009) Larger particles are usually found 
to be less toxic, due to a smaller surface area. At the same volume, they have fewer atoms 
in the surface layer available for interaction with other compounds or ionization (Angel 
et al. 2013). At the same time, the nanosize provides opportunity to cross biological 
barriers and cell membranes (Nel et al. 2006). A study by Lee et al. (2007) demonstrates 
the passage of Ag NPs with Brownian diffusion through the chorion pore canals into the 
chorionic space and inner mass of zebrafish (Danio rerio) embryos in vivo. Ivask et 
al. (2014) show the size- and concentration-dependent effects of citrate-coated Ag NPs 
(10 nm, 20 nm, 60 nm, and 80 nm) on bacteria, yeast, algae, crustaceans, and mammalian cells 
in vitro. The shape of the particle plays an important role, as well. Hua et al. (2014) found 
that exposure of zebrafish embryos to ZnO nanosticks had more serious effects on the 
survival rate and hatching of the embryos than ZnO nanospheres or cuboidal submicron 
particles. Another aspect is surface chemistry, such as their ability to form reactive 
species, catalytic and photocatalytic activity, leading to reactive oxygen species (ROS) 
production when irradiated by ultraviolet rays, as has been described for TiO2 and ZnO 
particles (Clemente et al. 2013; Sharma et al. 2020; Valério et al. 2020). The presence 
of coatings and addition of functional groups to the NPs surface alter their surface properties, 
improve their overall function, biocompatibility, or dispersion in aquatic media or reduce 
photocatalytic ROS production (Warheit 2008). For example, polyvinylpyrrolidone 
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(PVP) coating of Au NPs is considered safer and more biocompatible than citrate coating 
(Zhou et al. 2009; Iswarya et al. 2016).

This information must be considered in relation to the characteristics of the exposure media 
(pH, presence of ions, and ligands, as mentioned above) which in reality differ greatly for 
in vitro and in vivo settings. The precise particle and exposure characterization is a key factor 
of each experiment (Nel et al. 2006; Warheit 2008; Wijnhoven et al. 2009).

Toxicodynamics of metallic nanoparticles in fish

There are several distinct toxic mechanisms by which NPs can impact aquatic organisms, 
which often act together and lead to similar results. 

The most significant mechanism is the excessive production of ROS, overwhelming the cell 
antioxidant mechanisms, which can cause oxidative stress, leading to protein destabilization, 
lipoperoxidation of the cell membrane, DNA damage, causing genotoxic effects and cell 
death (Nel et al. 2006; Manke et al. 2013; Fu et al. 2014; Fard et al. 2015).

In many of the metallic NPs, the release of ions is a significant cause of adverse effects. 
The cytotoxic action of metal ions is caused by the complexation of metal cations with 
thiol groups of proteins and enzymes, which causes their inactivation (Sevcikova et al. 
2011). Thiol groups are present in enzymes responsible for dealing with oxidative stress, 
such as lactate dehydrogenase and glutathione, which complicates the distinction of the 
two above mentioned toxicological mechanisms, when the enzyme activity is measured 
(Ulrich and Jakob 2019). In the case of silver ions, there is also a more pronounced 
specific toxicological mechanism in fish. Specific inhibition of Na+/K+-ATPase leading to 
blockage of active uptake of Na+ and Cl- on gill basolateral cells, leading to disruption of 
osmoregulation and death (Morgan et al. 1997; Hogstrand and Wood 1998). However, 
Yue et al. (2016) show, that the inhibition of Na+/K+-ATPase was caused by both AgNO3 
and particulate Ag NPs (dissolution rate of Ag+ was 2.37%, thus ions can be only accounted 
for 16% of observed effect).

The mechanical effect is often attributed to particles with a greater aggregation rate. 
In fish, the adhesion of NPs to the gills and a subsequential mechanical restriction of gas 
exchange was described by Ma and Lin (2013). In fish embryos, aggregation of NPs 
on a surface of the chorion can block the chorion pore canals and cause hypoxia, which 
manifests with a decreased hatching rate (Shih et al. 2016; Caloudova et al. 2018).

Due to the larger surface area, small dimensions, and high sorption capacity, NPs can 
also act as a Trojan horse, binding contaminants to their surface, transporting them into 
organisms, where they can be released (Deng et al. 2017). This effect was reported by Zhu 
et al. (2011) in Haliotis sp. embryos exposed to tributyltin, and coexposed to TiO2 NPs and 
tributyltin. While the TiO2 NPs alone had no negative developmental effect at 2 mg·l-1, 
the same concentration increased the toxicity of tributyltin 20-fold, causing a drop in the 
hatching rate and an increase in the presence of malformations compared to exposition 
of embryos to tributyltin only. 

In the case of metallic nanoparticles with antimicrobial properties, such as ZnO NPs, TiO2 
NPs or Ag NPs, the adverse effect on the diversity and composition of the microbiome of the 
fish should be taken into consideration (Azizi-Lalabadi et al. 2019; Chupani et al. 2019).

Toxicokinetics of metallic nanoparticles in fish

It has been shown that NPs can be taken up by aquatic organisms and can adversely 
affect them at the level of algae, invertebrates, and fish (Gaiser et al. 2011; Skjolding 
et al. 2016). Possible routes of uptake of NPs in fish include absorption through the gill 
epithelia, the gut epithelia during dietary exposure and drinking, as well as skin epithelia 
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(Handy et al. 2008; Nam et al. 2014). From the above mentioned, the skin is thought 
to have the smallest impact, due to the secretion of protective mucus which can chelate 
charged NPs, as well as the lack of metal transporters compared to gill (Coello and 
Khan 1996; Handy et al. 2008). Yue et al. (2016) show endocytic uptake of Ag NPs and 
their storage in endosomes and lysosomes of cells of RTgill-W1 cell line. Nanoparticle 
localization was different from Ag+, ions were found predominantly in cytosol, associated 
with metallothionein-like protein fractions. 

The theory of the gut as a viable route of uptake is supported by Gaiser et al. (2011) 
who exposed common carp for 21 days to nano- and microsized particles of silver and 
subsequently analyzed silver concentrations in the gills, intestine, blood, liver, gallbladder, 
kidney, and brain. Significant uptake was detected in the intestine, liver, and gallbladder. 
Higher concentrations of silver were observed in groups exposed to smaller particles. 
Chronic dietary intake of ZnO NPs did not cause accumulation of zinc in common carp 
(Cyprinus carpio) tissues, however, adverse effects on immune system and homeostasis, 
as well as nephrotoxic and hepatotoxic effects were connected to the ZnO NPs exposure 
(Chupani et al. 2017; 2018a). Whether the fish digests food during the exposure plays an 
important role in the bioavailability and toxicity of ingested substances. Proteins and amino 
acids have been shown to complexate the Ag+ and prevent adverse effects on rainbow trout 
gut cells (RTGC) in the case of Ag NPs, they were only partially effective in sustaining 
the metabolic activity and integrity of the cell and lysosomal membranes (Minghetti and 
Schirmer 2016). It is to be noted that any damage, such as erosion or inflammation of 
epithelia, disables natural barriers and enables facilitated transport of NPs to the blood 
circulation and internal organs. The said damage can be caused by the NPs themselves. 
Chupani et al. (2018b) found an increased rate of apoptosis in the intestinal epithelium as 
well as increased levels of proteins associated with cancerous cell survival in the muscular 
layer of the intestine of the common carp (Cyprinus carpio) exposed to a diet containing 
ZnO NPs for six weeks.

Trophic transport of metallic nanoparticles

Bioaccumulation (accumulation of the NPs in the organism) and trophic transport have been 
shown to occur within the food chain, raising concerns about biomagnification (increased 
concentration of NPs in the food chain due to predation) within the ecosystems (Nam 
et al. 2014; Uddin et al. 2020). Ates et al. (2015) reported trophic transport between both 
CuO NPs and ZnO NPs contaminated crustacean (Artemia salina) and goldfish (Carassius 
auratus), resulting in accumulation of both CuO NPs and ZnO NPs in the intestine, liver, 
and gills of the goldfish. Similarly, Zhu et al. (2010) proved that TiO2 NPs can be transferred 
from daphnids to zebrafish by dietary exposure, but biomagnification did not occur. On the 
other hand, Chen et al. (2015) provided the evidence of TiO2 NPs transfer from an alga 
(Scenedesmus obliquus) to the water flea (Daphnia magna) with a biomagnification effect. 
Yoo-iam et al. (2014) evaluated the bioaccumulation and biomagnification of Ag NPs in 
a model food consisting of green algae (Chlorella spp.), water flea (Moina macrocopa), 
blood worm (Chironomus spp.), and silver barb (Barbonymus gonionotus). The highest 
bioaccumulation factor was found in the algae, the lowest bioaccumulation factor was 
determined in the fish. The trophic transfer occurred only between the algae and the water 
flea and there was no evidence of biomagnification. 

Silver

Silver NPs are among the most frequently used and researched NPs, thanks to their 
excellent thermal and electrical conductivity, catalytic properties, nonlinear optical 
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properties, as well as antibacterial, antivirotic, antimycotic, antiinflammatory, and 
anticancer activity (Tian et al. 2007; Nowack et al. 2011; Gurunathan 2015; Shaalan 
et al. 2016). Silver NPs have a wide range of industrial and consumer applications in 
the production of electronics, construction, agriculture, food industry, healthcare, and 
medicine (in both treatment and diagnostics), as well as in household products, appliances, 
cosmetics, and textiles (Park et al. 2013; European Commission 2014; Geertsma 
et al. 2015; Zhang et al. 2016). The annual worldwide production of Ag NPs is estimated 
to be 320 tonnes (Nowack et al. 2011).

Silver ions belong amongst the most toxic metals to fish (Morgan et al. 1997; 
Hogstrand and Wood 1998), Ag+ is attributed to a significant part of the toxic effect 
of Ag NPs, but not the whole, there is intrinsic toxicity of NPs (Bilberg et al. 2012; 
Lapresta-Fernández et al. 2012; Khan et al. 2015; Speshock 2018). Van Aerle 
et al. (2013) applied sequencing-based transcription-profiling on zebrafish embryos exposed 
to Ag NPs, bulk silver, and AgNO3 for 48 h. Significant changes in gene expression were 
found in all exposition groups, with significant overlaps between the groups, particularly 
pathways associated with oxidative phosphorylation and protein synthesis. Ag NPs specific 
changes in gene expression were found, suggesting that Ag+ is not the only originator 
of the adverse effect. This claim is supported by a study performed on adult zebrafish 
exposed to Ag NPs, and AgNO3 for 48 h. Total silver body burden was significantly higher 
in groups exposed to Ag NPs and subsequent gene expression analysis revealed a variety 
of genes, that were differentially expressed only in Ag NPs expositions (Griffitt et al. 
2009). The effect of Ag NPs exposition on gills has been studied thoroughly because gills 
are one of the main spots of Ag+ toxicity. Garcia-Reyero et al. (2015) compared the 
effects of Ag NPs and AgNO3 on gills of fathead minnow (Pimephales promelas). During 
the first 4 h, mucus production in all groups increased, which was followed by a decrease 
in mucus production after 24 h of exposure. Microarray analysis detected 109 differentially 
expressed genes shared by both AgNO3 and Ag NPs, but there as many as 615 differentially 
expressed genes specific to Ag NPs. In a study by Hawkins et al. (2015), AgNO3 and Ag 
NPs caused similar disruptions in gill structure and ionic regulation, including circulatory 
disturbances, and decreased activity of the Na+/K+-ATPase.

The developmental toxicity of Ag NPs to fish is well documented (Yeo and Kang 2008; 
Massarsky et al. 2013; Park et al. 2013; Xia et al. 2016). A dose-dependent increase in 
mortality, amount of non-hatched embryos, and presence of sublethal malformations, such 
as the presence of notochord deformations or pericardial oedema, bradycardia, and cardiac 
arrhythmia were found after 72 h exposition to Ag NPs. The distribution of Ag NPs was 
visualized by transmission electron microscopy in the brain, heart, yolk, and blood of the 
embryos (Asharani et al. 2008). Furthermore, the possibility of transgenerational transfer 
of silver has been shown in female zebrafish injected with 1 mg·l-1 10 nm PVP capped, in 
which the passage to eggs has been proven. The highest load of Ag NPs was found in the 
liver of the fish, in which the upregulation of inflammatory gene interleukin-1β, tumour 
necrosis factor alpha (TNF-α), and pro-apoptotic caspase genes was measured (Speshock 
et al. 2016). 

Impairment of the neurological development, manifesting morphologically as a hypoplastic 
hindbrain, reduction of the eye and overall head size, plus cardiac defects, accompanied with 
alteration of the neural development-related genes expression was observed in zebrafish 
embryos exposed to Ag NPs up to 96 h post fertilization; no free Ag+ was detected in exposure 
solutions. Also, higher accumulation of Ag was observed in the head area of the embryo 
(Xin et al. 2015). Another study brought evidence of reduction of the acetylcholinesterase 
(AChE) activity in the brain of adult zebrafish, exposed to 0.1 ppm of Ag NPs for 15 days. 
This leads to continuous muscle stimulation, manifested in altered responses and behaviour 
of the fish. Neurological changes were accompanied by necrotic and degenerative changes 
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in the liver, as well as decreased activity of liver antioxidant enzymes, catalase, and 
superoxide dismutase, as a result of oxidative stress (Devi et al. 2015). Induction of 
oxidative stress was measured in zebrafish liver cells exposed to 120 nm Ag NPs for 24 h. 
This was accompanied by upregulation of the expression of a variety of endoplasmatic 
reticulum specific stress marker genes, pro-apoptotic gene Bax, and TNF-α. On the other 
hand, the expression of the tumour suppressor gene p53 was downregulated (Christen 
et al. 2013). The summary of studies carried out into the toxicity of Ag NPs to fish is listed 
in Table 1.

Gold

Gold NPs are popular due to their relatively easy synthesis, stability, catalytic and 
optoelectronic properties, low toxicity, and high biocompatibility. They are used in 
technical applications such as electronics, photovoltaics, catalysts, probes, and sensors. 
Gold NPs also play an important role in medicine, both in diagnostics (for example in 
tumour detection and imaging) and therapeutic applications – in drug delivery, or as 
photothermal agents (Chandra et al. 2013; Mahapatra et al. 2015; Patibandla et al. 
2018). The estimated worldwide production of Au NPs ranges from 1–3 tonnes per year 
(Pulit-Prociak and Banach 2016).

Although the toxicity of Au NP is significantly lower than Ag NPs (Bar-Ilan et al. 2009; 
Lapresta-Fernández et al. 2012; García-Cambero et al. 2013), major adverse effects 
have been described as well. In a study by Patibandla et al. (2018), exposure of zebrafish 
embryos to gold nanorods lead to increased mortality, decreased hatching, and a decreased 
heart rate. A significant increase in the expression of oxidative stress genes as well as 
increased apoptosis occurred, suggesting an important role of ROS in the mechanism of 
Au NPs toxicity.

Similar adverse effect on the circulatory system manifested by the presence of heart 
oedemas and decreased heart rate was observed in zebrafish embryos exposed to 
Au NPs stabilized with PVP (Hlavkova et al. 2020). Upregulation of oxidative stress 
gene expression, as well increased levels of protein biomarkers, such as catalase, 
superoxide dismutase, and metallothioneins were found in adult zebrafish exposed to 
Au NPs for 96 h. Furthermore, decreased swimming speed and abnormalities in the 
swimming behaviour were observed (Botha et al. 2019). In addition, Dedeh et al. 
(2014) reported modulation of the expression of genes involved in oxidative stress, 
mitochondrial metabolism, and DNA repair, as well as altered neurotransmission due 
to increased brain and muscle AChE activity in adult zebrafish, exposed to Au NPs 
contaminated sediment for 20 days.

Genotoxic effects of Au NPs have been observed even at concentrations as low as 4 μg·l-1 
in gilthead seabream (Sparus aurata) exposed to citrate and PVP coated Au NPs for 96 h. 
Nanoparticles have induced DNA damage (erythrocyte DNA strand breaks), the frequency 
of erythrocytic nuclear abnormalities was also increased (Barreto et al. 2019). Alteration 
of gene expression levels, mutations, and mitochondrial dysfunction was observed in 
zebrafish exposed to citrate capped Au NPs (sized 12 nm and 50 nm) in their diet, over 
the period of 36 and 60 days. More severe effects were observed in groups fed the smaller 
particles (Geffroy et al. 2011). The summary of studies carried out into the toxicity of 
Au NPs to fish is listed in Table 2.

Titanium dioxide

Of the group of metal oxides, titanium dioxide is the most commonly used. Piccinno et al. 
(2012) estimate its annual global production volume to be 3 000 tonnes. Titanium dioxide 
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has good electrical properties and catalytic activity, high light reflectance, and a refractive 
index. It’s stable and insoluble in water (Sungur 2020). There are three crystal structures 
of TiO2, brookite, anatase, and rutile. Anatase is considered to be the most chemically 
reactive (Shi et al. 2013). TiO2 is used as a photocatalyst in solar panels, in plastics, paints, 
pharmaceuticals, and even as a food colouring. Since TiO2 is transparent and blocks UV 
radiation, it is frequently used in cosmetics, especially sunscreens (Klaine et al. 2008; 
Ray et al. 2009; Stark et al. 2015).

TiO2 is generally thought to be a safe, non-toxic material. Griffitt et al. (2008) 
performed acute, 48-h tests with 30 nm TiO2 NPs at concentrations of up to 10 mg·l-1 on 
both adult and larval zebrafish, alongside with adult crustacean Daphnia pulex, juvenile 
water fleas Ceriodaphnia dubia, and algae (Pseudokirchneriella subcapitata, 96-h test). 
TiO2 did not cause adverse effects in any of these assays. Similarly, Jemec Kokalj 
et al. (2019) found no adverse effects on survival, hatching, and sublethal endpoints in 
zebrafish embryos during an acute 96-h assay, using three anatase TiO2 NPs (sized 4.9 
nm, 30 nm, and 5.1 nm) and three titania Magnéli suboxides (sized 192 nm, 507 nm, and 
795 nm) at concentrations of up to 100 mg·l-1. Exposure of zebrafish embryos to TiO2 NPs 
for 120 h showed no effect on the survival, hatching, and malformation rates, however, 
the average and maximum velocity and activity level of the larvae were affected already 
at 0.1 mg·l-1 (Chen et al. 2011). However, assays with chronic and subchronic duration 
bring evidence of adverse effects of TiO2, such as reproductive toxicity, namely a 29.5% 
loss of eggs, which was found after a 13-week exposure of zebrafish to 0.1 mg·l-1 anatase 
TiO2 NPs (Wang et al. 2011). Hepatotoxic effects, likely as an effect of oxidative stress, 
were found in goldfish (Carassius auratus) and zebrafish exposed to solutions TiO2 NPs 
as low as 0.01 mg·l-1 for 21 days, with a subsequent 14 day depuration period. Results 
of this study show degeneration of hepatocytes and concentration-dependent increase of 
malondialdehyde, indicating lipid peroxidation and significant glutathione-S-transferase 
(GST) activity increase at day 7 of exposure, however, at 21 days the GST activity 
decreased in both species as a result of prolonged stress (Diniz et al. 2013). Similarly, 
acute (2 days) and subchronic (14 days) exposures of juvenile benthic fish Prochilodus 
lineatus to TiO2 NPs lead to the presence of degenerative alterations of hepatocytes and 
increase of glutathione after both exposures and GST activity after subchronic exposure. 
Furthermore, a decrease of the red blood cell count and monocytosis after acute exposure 
was noted. In the case of subchronic exposure, both red blood cell and white blood 
cell counts including lymphocytes were decreased, which points to immunotoxic effects 
of TiO2 NPs (Carmo et al. 2019). This claim is supported by another study, in which 
fathead minnow was exposed to environmentally relevant concentrations of TiO2 NPs 
(2 ng·g-1 or 10 μg·g-1 of body weight), and subsequently challenged with bacterial 
pathogens Aeromonas hydrophila or Edwardsiella ictaluri. TiO2 NPs were found to be 
accumulated in the kidney and spleen significantly more compared to the liver and rest of 
the body, resulting in histopathological damage of these organs. Neutrophil phagocytosis 
was significantly affected, increased mortality and morbidity during bacterial infection 
was observed (Jovanović et al. 2015). After subchronic (14 days) semi-static exposure 
of rainbow trout, histopathological changes in gills (oedema and thickening of the gill 
lamellae) and erosions of enterocytes, as well as decreased Na+/K+-ATPase activity in 
the gills and intestine were observed. Thiobarbituric acid reactive substances (TBARS) 
were increased in a concentration-dependent manner in the gills, intestine, and brain; the 
glutathione level was also increased in the gill, suggesting the effect of oxidative stress 
(Federici et al. 2007). The neurotoxic potential of TiO2 has been shown by the decrease 
of muscular AChE activity observed in juvenile Prochilodus lineatus in two separate 
studies (Miranda et al. 2016; Carmo et al. 2019). The summary of studies carried out 
into the toxicity of TiO2 NPs to fish is listed in Table 3.
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Conclusion

With the rise of nanotechnology, the importance of thorough nanotoxicological research 
is growing, because the properties and behaviour of NPs differ from their bulk and ionic 
counterparts both in vitro and in vivo. A proper characterization of the determining 
properties of NPs, such as their chemical composition, crystal structure, size, shape, 
presence of coatings, surface chemistry, charge, and solubility, is a key step of every study. 
When assessing the overall safety of NPs, an important aspect to consider is the different 
behaviour of NPs in standardized test media and in the environment, in which NPs interact 
with the substances present – the natural organic matter and inorganic materials. The 
toxicity of NPs is thought to be generally lower in the environment than in the laboratory 
settings, but a cautious approach to nanotechnologies is warranted.
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