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Abstract

This study was conducted to compare angles physically set on the stifle joints of cadaveric 
limbs of dogs with the results by four different radiographic methods for stifle angle measurement. 
Thirteen pelvic limbs from various large breeds and skeletally-mature dogs were used. The stifles 
were fixed at four angles: 125°, 130°, 135° and 140°. Altogether 52 radiographs were done. Each 
stifle angle set on the cadaver limbs was radiographically measured using four sets of landmarks 
(the goniometric, long axis, eminence and kinematic methods). We found similarity between 
angles physically set on cadaver limbs and radiographically measured using the long axis method 
(P > 0.05). The goniometric method showed similarity in group of limbs with the stifle fixed 
at 140° (P > 0.05), and other measurements differed significantly (P < 0.05). Eminence and 
kinematic method measurements were different compared to the angle of fixation of the stifle 
on the cadaver (P < 0.05) but similar compared to each other (P > 0.05). The method of stifle 
joint angle measurement should be considered when comparing similar studies, and also in pre-
operative measurements for some tibial osteotomies aimed at stabilizing the joint after cranial 
cruciate ligament rupture.

Determination of angulation, goniometry, stifle instability, dog

Of all the joints in dogs, the stifle joint is most commonly affected with diseases. Most 
problems relate to joint instability and osteoarthritis because of degeneration and rupture of 
the cranial cruciate ligament (CrCL) (Vasseur 2003). A large number of different surgical 
procedures have been described for the treatment of stifle instability in dogs, and decision-
making regarding surgical treatment for CrCL remains controversial. Currently the most 
commonly used are tibial osteotomies (TO). Nisell, who described the resultant joint 
force as approximately parallel to the patellar ligament, based the advancement of tibial 
tuberosity on mechanical model analysis of the human knee (Nisell et al. 1986). Based on 
these data, Montavon and Tepic proposed that a similar situation exists in dogs, and tibial 
tuberosity advancement (TTA) would similarly neutralize cranial tibiofemoral shear force 
in CrCL-deficient stifle joints in dogs (Montavon et al. 2002; Tepic et al. 2002; Tepic 
and Montavon 2004). Based on experimental ex vivo models, it has been confirmed that 
if the patellar tendon angle (PTA) is approximately perpendicular, these shear forces are 
neutralized and the point is referred to as the “crossover point” (Apelt et al. 2007; Miller 
et al. 2007; Kipfer et al. 2008; Hoffmann et al. 2011).

An idealized mid-stance stifle angle of 135°, necessary for preoperative planning for 
some tibial osteotomies, has been proposed from kinematic gait studies, with well-defined 
anatomical landmarks used to determine the stifle angle (Allen et al. 1994; Schaefer 
et al. 1998; Tepic et al. 2002; Kipfer et al. 2008; Hoffmann et al. 2011). The most 
commonly used were as follows: the greater trochanter of the femur, the lateral malleolus 
of the fibula, and a point of rotation between the fibula head and the femur (Allen et al. 
1994; Schaefer et al. 1998; Montavon et al. 2002). For the sake of comparison, the 
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landmarks used for stifle joint angle measurement in ex vivo clinical studies are not 
described (Apelt et al. 2007; Miller et al. 2007; Kim et al. 2009), and in the clinical 
case series of TTA, the anatomical landmarks were, the long axes of the femur and tibia, 
it means that they were different from those described in the kinematic gait studies mentioned 
above (Hoffman et al. 2006; Lafaver et al. 2007; Stein and Schmoekel 2008; Voss 
et al. 2008). Consensus is however lacking among authors regarding the optimal landmarks 
for radiographic determination of the stifle angle. It would be useful to be able to accurately 
estimate the real stifle angle using radiographically repeatable anatomical landmarks on the 
pelvic limbs of dogs (Barnes and Owen 2015). Otherwise, there is still a risk of incorrect 
preoperative measurements for some TO (Bush et al. 2011).

The purpose of our study was to try to define radiographically repeatable anatomical 
landmarks which would correlate with the goniometric measurement of the stifle angle set 
physically on cadaver limbs. In connection with this we hypothesized that if we were able 
to determine the centre of the medial condyle on the radiographs using the Blumensaat’s 
line, then the radiographic measurement might correlate with the angle set on the cadaver 
limbs according to the goniometer (Barnes and Owen 2015).

Our second aim was to compare the angles set physically on cadaver limbs with the 
angles measured using different radiographic methods (RM), and we assumed that the 
angles set on the cadavers would differ from those measured by means of RM, except the 
first one as mentioned above. 

Finally, we wanted to compare individual RM with each other, and we hypothesized 
that the use of different landmark methods would result in different stifle angles being 
measured. 

Materials and Methods
We used thirteen pelvic limbs from various skeletally-mature dogs weighing in excess of 25 kg, euthanized 

for reasons unrelated to this study. Prior to measurement the stifle joints were radiographically evaluated for any 
signs of degenerative diseases, and affected ones were excluded. Each limb was harvested by disarticulation 
of the coxofemoral joint.

The limbs were placed in the medio-lateral view, such that the head of the femur, the stifle and the tibiotarsal 
joint were all positioned on the cassette. Using a standard transparent plastic goniometer, with one arm directed 
towards the longitudinal axis of the femur and the second arm centred over the medial malleolus of the tibia, the 
stifle joint angle was measured approximately at the point of the centre of the medial femoral condyle. We used 
the centre of the proximal and middle part of the diaphysis of the femurs because the limbs were positioned on 
the lateral side on the table, so we could not use the line connecting with the great trochanter as it was used by 
Jaegger et al. (2002). We linked these two points with the centre of the medial condyle of the femur. The stifles 
were physically positioned at four angles: 125°, 130°, 135° and 140°. Each limb was fixed at the desired angle 
with intramedullary pins drilled into the proximal part of the femur and the distal part of the tibia, and held in 
a frame for external fixation of bone fractures (Standard fixation, Veterinary instrumentation, UK) at the 
required angle. The inclusion criterion for the radiographs was superimposition of the femoral condyles 
within a maximum tolerance of 2.0 mm. The total number of radiographic images recorded in this study 
was 52. 

For radiological determination of the stifle angles, four different methods of landmarking were used and 
applied to the radiographs (Plate IV, Fig. 1). These were as follows:

 
The goniometric  method (GM)

The long axis of the femur was defined as the line connecting the midpoint of the shaft in the minor trochanter 
region with the centre of the medial condyle of the femur. The centre of the condyle was defined with the 
Blumensaat’s line, as a tangent drawn along the roof of the intercondylar notch and separating the articular 
surfaces of the condyles (Blumensaat 1938; Barnes and Owen 2015). The axis of the tibia was defined as 
a line connecting the midpoint of the most distal part of the tibia just above the tibiotarsal joint and the centre of 
the medial condyle of the femur. 

The long axis method (LAM)
The long axes of the femur and tibia were defined based on the lines between the two shaft midpoints in 

the proximal and middle parts of the femoral length, and the two shaft midpoints in the distal and middle parts 
of the tibia. 
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The eminence method (EM)
This was defined as the angle between the greater trochanter of the femur, the midpoint of the tibial intercondylar 

eminence and the midpoint of the most distal part of the tibia just above the tibiotarsal joint.
 

The kinematic  method (KM)
This measured the angle between the greater trochanter of the femur, the midpoint of the distance between the 

distal sesamoid bone m. gastrocnemii and the fibular head just caudal from the femoral condyles, and the midpoint 
of the most distal part of the tibia just above the tibiotarsal joint (Bush et al 2011). 

All radiographic measurements were repeated two times with a three-month interval, by the same observer, 
who was appropriately trained and familiar with the stifle anatomy. For each of the two assessments, radiographs 
were presented in a random order to help ensure on the second occasion that the observer was unaware of their 
initial angle.

Statistical analysis

Measured values were expressed as means ± standard deviations. One-way analysis of 
variance (ANOVA) was performed to compare groups with continuous data which were 
normally distributed according to the results of the Shapiro-Wilk normality test. Tukey’s 
multiple comparison was used as the post hoc test for comparison of individual radiographic 
methods. For evaluation of differences between the RM and the angles physically set 
on the cadaver limbs, we used Dunnett’s multiple comparisons test as the post hoc test. 
Significance determining the difference between the groups was considered for a P value 
of 0.05.

Intra-observer agreement was evaluated with the two-way random single measures 
intra-class correlation coefficient for absolute agreement (ICC 2,1) (Shrout and Fleiss 
1979). Measurements were grouped by segregating the first and second rounds. The 
Intra-class correlation coefficient (ICC) ranged from 0 (no agreement) to 1 (perfect 
agreement). An ICC < 0.5 was considered as indicating poor reliability, values between 
0.5 and 0.75 indicated moderate reliability, values between 0.75 and 0.9 indicated good 
reliability, and values greater than 0.90 indicated excellent reliability (Koo and Li 
2016).

All statistical analyses were performed using the IBM SPSS version 27 statistical 
software.

Results 

A total number of 13 stifles were included in this study, and 52 radiographs were 
evaluated. Results are shown in Table 1 and are presented separately, divided into groups 
according to the angles set on the cadaver limbs.

Table 1. Mean values, standard deviations and 95% confidence interval of individual radiographic methods shown 
separately according to angles set on cadaver limbs. Values are expressed in degrees.

C	 GM	 LAM	 EM	 KM
	 M ± SD	 95 % CI	 M ± SD	 95 % CI	 M ± SD	 95% CI	 M ± SD	 95% CI
125	 132.4 ± 5.0	 130.2–134.6	 126.4 ± 4.5	 124.4–128.4	 143.3 ± 4.2	 141.5–145.2	 146.7 ± 4.9	 144.6–148.9
130	 136.9 ± 4.7	 134.8–139.0	 127.6 ± 5,4	 127.6–132.5	 146.9 ± 4.6	 144.9–148.9	 150.3 ± 4.7	 148.2–152.4
135	 141.0 ± 5.2	 138.7–143.3	 133.3 ± 6,3	 130.5–136.1	 150.6 ± 6.1	 147.9–153.3	 154.2 ± 6.6	 151.2–157.1
140	 144.0 ± 5.5	 141.5–146.4	 136.8 ± 6.5	 133.9–139.6	 153.4 ± 5.6	 150.9–155.9	 157.7 ± 6.4	 154.9–160.5

M - mean value; SD - standard deviation; 95% CI - confidence interval; C - Cadaver; GM- goniometric method; 
LAM - long axis method; EM - eminence method; KM - kinematic method.
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Comparisons of angles set on 
cadaver limbs and individual 
radiographic measurements are 
shown in Table 2. We found no 
significant differences between angles 
set on the cadaver limbs and angles 
measured by the LAM in any angle 
group, with a mean difference of 1.4° 
(P = 0.62) in the 125° group; 0.04° 
(P = 0.99) in the 130° group; 1.67° 
(P = 0.69) in the 135° group, and 
3.24° (P = 0.15) in the 140° group. 
Significant differences were found 
between angles set on the cadaver 
limbs and angles measured by the 
GM in three groups, with a mean 
difference of 7.44° in the 125° group; 
6.9° in the 130° group; 6.01° in the 
135° group; there was no significant 
difference in the 140° group with a 
mean difference of 3.95° (P = 0.06). 
The two other methods (EM and KM) 
differed significantly from the angles 
set on the cadaver limbs in all four 
angle groups (P < 0.05). 

Significant differences were observed comparing the measured angles between most 
RM (P < 0.05) in each angle group, except between the EM and KM (Table 3, Fig. 2). 

Table 2. Comparison of angles set physically on cadaver 
limbs with individual radiographic method results. Values are 
expressed in degrees.

C	 RM	 Mean difference	 P value
	 C vs. GM	 7.44	 < 0.05

125
	 C vs. LAM	 1.40	 > 0.05 ª

	 C vs. EM	 18.35	 < 0.05
	 C vs. KM	 21.74	 < 0.05
	 C vs. GM	 6.90	 < 0.05

130
	 C vs. LAM	 0.04	 > 0.05 ª

	 C vs. EM	 16.91	 < 0.05
	 C vs. KM	 20.31	 < 0.05
	 C vs. GM	 6.01	 < 0.05

135
	 C vs. LAM	 1.67	 > 0.05 ª

	 C vs. EM	 15.62	 < 0.05
	 C vs. KM	 19.18	 < 0.05
	 C vs. GM	 3.95	 > 0.05 ª

140
	 C vs. LAM	 3.24	 > 0.05 ª

	 C vs. EM	 13.43	 < 0.05
	 C vs. KM	 17.69	 < 0.05

C - angle set on cadaver limb; RM - radiographic method; 
GM - goniometric method; LAM - long axis method; 
EM - eminence method; KM - kinematic method; ª - non-
significant difference

Fig. 2. Mean values and standard deviations of radiographic methods.
Different colours represent individual angles set on cadaver limbs: white - 125°, light grey - 130°, dark 
grey - 135°, black - 140°. Columns from left to right represent radiographic methods: 1) goniometric method, 
2) long axis method, 3) eminence method, 4) kinematic method.
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The mean difference between 
measurements by the EM and KM in 
the 125° group was 3.38° (P = 0.08); in 
the 130° group it was 3.40° (P = 0.1); 
in the 135° group it was 3.55° (P = 0.22) 
and in the 140° group it was 4.25° 
(P = 0.09).

For intra-observer measurements 
we used all values from each method, 
without respect to the groups according 
to which the measurements were 
previously performed. We compared 
all values obtained from each 
radiographic method, measured twice 
at a three-month interval. The ICC 
was excellent for each radiographic 
method: 0.97 for GM; 0.94 for LAM; 
0.96 for EM and 0.95 for KM.

Discussion

Firstly we hypothesized that if 
it were possible to determine the 
centre of the medial condyle on the 
radiographs using the Blumensaat’s 
line, then the radiographic goniometric 
measurements would correlate 
with the angles set on the cadaver 
limbs according to the goniometer. 
We found significant differences 
between the angles set on the cadaver 
limbs and radiographic goniometric 
measurements in all groups except 
the 140° group, where the P value 

was 0.06, which was almost a significant difference. Another ex vivo study in which the 
authors evaluated the reliability of goniometry by comparing goniometric measurements 
with radiographic measurements found no significant differences between goniometric and 
radiographic measurements (Jaegger et al. 2002). In the study, the authors did not define 
the exact point of the condyle at which they made their radiographic measurements, and they 
used the greater trochanter for the femoral axis, which was not what we did. In addition, the 
radiographic measurements were done by one observer only once. To our knowledge, only 
one study has used the Blumensaat’s line to measure stifle angles in dogs. The authors have 
reported that the Blumensaat’s line provided a useful consistent radiological landmark on 
the distal femur for the assessment of stifle joint angulation (Barnes and Owen 2015). 
Our intra-observer measurements (ICC Gm- 0.97) confirmed that the Blumensaat’s line 
is a replicable and constant feature for radiographic measurements. The angles set on the 
cadaver limbs using a goniometer differed significantly from the radiographic measurements 
using the GM. One of the possible reasons for this difference is that we measured the angles 
on the cadaver limbs still bearing the soft tissues, which may have led to slightly inaccurate 
locating of the centre of the medial epicondyle. The lastly mentioned study was conducted 
on client-owned dogs, and the authors did not use a goniometer but a neutral stifle angle 

Table 3. Comparison of individual radiographic methods in 
each group of measurements based on different angles fixed 
on cadaver limbs. Values are expressed in degrees.

C	 Rm	 Mean difference	 P value
	 GM vs. LAM	 6.03	 < 0.05
	 GM vs. EM	 10.91	 < 0.05

125
	 GM vs. KM	 14.30	 < 0.05

	 LAM vs. EM	 16.94	 < 0.05
	 LAM vs. KM	 20.33	 < 0.05
	 EM vs. KM	 3.38	 > 0.05ª
	 GM vs. LAM	 6.85	 < 0.05
	 GM vs. EM	 10.00	 < 0.05

130
	 GM vs. KM	 13.40	 < 0.05

	 LAM vs. EM	 16.86	 < 0.05
	 LAM vs. KM	 20.26	 < 0.05
	 EM vs. KM	 3.40	 > 0.05ª
	 GM vs. LAM	 7.68	 < 0.05
	 GM vs. EM	 9.61	 < 0.05

135
	 GM vs. KM	 13.17	 < 0.05

	 LAM vs. EM	 17.29	 < 0.05
	 LAM vs. KM	 20.85	 < 0.05
	 EM vs. KM	 3.55	 > 0.05ª
	 GM vs. LAM	 7.19	 < 0.05
	 GM vs. EM	 9.47	 < 0.05

140
	 GM vs. KM	 13.73	 < 0.05

	 LAM vs. EM	 16.67	 < 0.05
	 LAM vs. KM	 20.93	 < 0.05
	 EM vs. KM	 4.25	 > 0.05ª

C - angle set on cadaver limb; RM - radiographic method; 
GM - goniometric method; LAM - long axis method; 
EM - eminence method; KM - kinematic method; ª - non-
significant difference
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(nSA) for radiographic positioning, which was physiological for each particular dog. In 
addition, they used the mechanical axis of the femur rather than the mid-shaft line as we 
did, so the results cannot be compared. 

We did not find significant differences between the angles set on cadaver limbs and 
the LAM in any group. Significant differences were found between angles set on cadaver 
limbs and angles measured by the GM in three groups but was no significant difference 
was found in the 140° group, while the other methods differed significantly in all groups. 
By comparing individual RM, we found significant differences between all of them, except 
between the EM and KM. This finding almost completely supports the hypothesis that using 
different radiographic landmark methods would result in different stifle angles, which may 
subsequently affect the calculated advancements of some tibial osteotomies. According to 
the findings of another study, the use of different anatomical landmark methods for stifle 
angle determination can also result in different angles, and finally influence the value of 
the required advancement of tuberositas tibiae in the TTA procedure. The study did not 
identify the clinically relevant TTA required to achieve a PTA of 90° using the EM and 
KM methods, only greater advancement with the LAM (Bush et al. 2011). Our results 
are similar, with large discrepancies found between the LAM vs. EM and KM but no 
significant difference between the EM and KM.

There are many considerations regarding the pre-planning of TTA, but the aim of each 
plan is to achieve a perpendicular post-operative PTA (Kapler et al. 2015). Some of these 
methods require the joint to be set close to full extension, at approximately 135°, which 
is the average midstance stifle angle at the walk and trot, as determined in kinematic gait 
studies with well-defined landmarks (Allen et al. 1994; Schaefer et al. 1998; Tepic et 
al. 2002; Kipfer et al. 2008; Hoffmann et al. 2011). In contrast, the landmarks used for 
measuring stifle angle in ex vivo clinical studies reporting the TTA surgical procedure are 
not described (Apelt et al. 2007; Miller et al. 2007; Kim et al. 2009). Consequently, 
during TTA planning, if the stifle is positioned at 135° using inappropriate landmarks, 
the resultant stifle angle may actually be more flexed or extended than the required 135° 
angle determined in kinematic studies. This situation can affect the PTA, because stifle 
joint flexion is a major contributor to the PTA, with a linear decrease in the PTA with 
increasing flexion (Dennler et al. 2006). The landmarks for angle measurement, if they 
are described, vary among the studies (Jaegger et al. 2002; Dennler et al. 2006; Lafaver 
e al. 2007; Voss et al. 2008; Hoffmann et al. 2011; Millet et al. 2013; Cadmus et al. 
2014). If the stifle is not at a true 135° angle because of a discrepancy between the methods 
of angle measurement, or the midstance angle of 135° cannot be applied to all dogs, 
then radiographs from standing dogs should be made to determine the real neutral angle 
of the joint. Pre-operative measuring using inappropriate radiographs may result in 
under- or over-advancement of the tibial tuberosity. Residual cranial tibial translation is 
a potentially clinically important post-operative finding after TTA. The high number of 
meniscal tears associated with TTA in the initial phase of clinical introduction may be 
due, at least in part, to residual cranial translation. Numerous theories have been proposed 
for under-advancement during TTA (Meeson et al. 2018). A recent study reported that 
the selection of a larger cage size during TTA may be advantageous to compensate for 
under-advancement and to minimize the risk of residual cranial tibial translation (Jin et al. 
2018). In light of another recent study which showed that 70% of TTA dogs had persistent 
post-operative femorotibial subluxation on weight‐bearing radiographs, any combination 
of methods that would lead planners to select a larger advancement cage size may be 
warranted (Skinner et al. 2013). One of the possible reasons for the results of these studies 
is an inaccurate pre-operative assessment due to incorrectly measured angles in the stifles, 
as the procedure for measuring the joint angle is not precisely defined and the available 
methods provide different results.
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A single observer was responsible for all measurements in this study, but for that reason 
they were done twice. Determination of the Blumensaat’s line is subjective, although it is 
a distinct landmark and there should not be a wide inter-observer variation in its assessment. 
The limbs of large dogs of various breeds were used in this study, whereas there may be 
differences between the angles in the stifle joint of small breeds due to differences in their 
bone formation. 

In conclusion, we found large discrepancies between the angles set physically on the 
cadaver limbs and the radiographic measurements, except for the LAM, and also between 
individual RM, except EM and KM. These results suggest that using different radiographic 
landmark methods results in different stifle angles, which may have a negative impact on 
further measurements. The specific stifle angle measurement method should be considered 
when comparing similar studies, and also in pre-operative measurements for some tibial 
osteotomies aimed at stabilizing the joint.
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Fig. 1. Radiographic representation of landmarks used to determine the stifle angle. The stifle joint is fixed at 130°. 
A - goniometric method, B - long axis method, C - eminence method, D - kinematic method


