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Abstract
Severe spinal cord injury (SCI) resulting in permanent sensory-motor and autonomic 

dysfunction caudal to a damaged spinal cord (SC) segment is a catastrophic event in human as 
well as in veterinary medicine. The situation of paraplegic/tetraplegic people or animals is further 
impaired by serious complications and often displays an image of permanent suffering. Therapeutic 
hypothermia (TH) has shown neuroprotective capacity in numerous experimental and several 
clinical studies or case reports. Hence, the method draws increasing attention of neuroscientists 
as well as health care workers. While systemic TH is a too complex procedure for veterinary 
practice, local application of TH with a reduced risk of the whole body temperature fluctuations 
and minimal side effects can become one of the therapeutic tools considered in the treatment 
of acute traumatic SCIs in bigger animals, especially when surgical decompression of spinal medulla 
and vertebral column reconstruction is indicated. Still, additional large prospective randomized 
studies are essential for the standardization of therapeutic protocols and the introduction of the 
method into therapeutic armamentarium in canine and feline spinal traumatology. The research 
strategy involved a PubMed, MEDLINE (Ovid), EMBASE (Ovid), and ISI Web of Science 
search from January 2000 to July 2021 using the terms “canine and feline spinal cord injuryˮ, 
“hypothermiaˮ, and “targeted temperature managementˮ in the English language literature; also 
references from selected studies were scanned and relevant articles included.

Dog, cat, spinal trauma, targeted temperature management  

Spinal cord injuries (SCIs) occur in both humans and animals. Their incidence is not high, 
but the spinal cord (SC) lesion often results in permanent neurological deficit characterized 
by partial or complete loss of motor, sensory, and autonomic functions caudally from the 
site of the lesion (Bednarik et al. 2010; Lorenz et al. 2011; Spinal cord injury facts and 
figures 2012). The aetiology of SCI can be traumatic or ischaemic (Beattie et al. 2002). 
Within minutes, the initial impact is followed by a cascade of destructive processes that are 
similar regardless of the original cause. They persist for weeks and months and considerably 
increase the area of the original spinal cord (SC) damage (Olby 2010; Oyinbo 2011). The 
natural history of spontaneous recovery following SCI is discouraging. Currently available 
therapeutic interventions (limited to controversial administration of methylprednisolone, 
surgical decompression of neural structures, rehabilitation, and physical therapy) fail 
to significantly improve outcomes (Olby et al. 2003; Zielinska et al. 2017; Rouanet 
et al. 2017). The quality of life of tetraparetic/tetraplegic, paraparetic/paraplegic patients 
is further negatively affected by serious complications (Boakye et al. 2012). The SCI 
therefore represents a catastrophic event in human as well as in veterinary medicine (Ahuja 
et al. 2017; Gallucci et al. 2021). Due to the unsatisfactory prognosis and permanent 
suffering of paralyzed animals, the authorities, as well as the community consider 
euthanasia the best solution to the situation. However, an intense emotional relationship 
can develop between an owner and his/her pet animal. Even in a case of serious disability, 
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pet owners look for various therapeutic options and often are ready to spend substantial 
sums of money to help their pets. Promising results of laboratory research (Hosier 
et al. 2015), favourable outcomes recorded in some patients with cervical traumatic SCIs 
following the application of therapeutic hypothermia (TH) (Hansebout and Hanseobout 
2014; Cappuccino et al. 2017) and the contemporary effort to translate this remedy into 
a human as well as veterinary medicine (Kaneko et al. 2017; Kafka et al. 2020) inspired 
the authors to review the current literature dealing with therapeutic hypothermia/targeted 
temperature management (TH/TTM) following acute traumatic canine and feline SCIs.

Aetiology

In humans, the main cause of an acute SCI is compression, contusion, distension, 
laceration, and partial or complete transection of the spinal medulla (Hachem et al. 2017). 
The impact on the SC is usually inflicted by fractured or luxated vertebrae, foreign bodies, 
sequesters of extruded cervical or thoracic intervertebral discs, dorsal osteophytes and 
protruded spinal ligaments (Griffiths 1978; Rouanet et al. 2017). Spinal cord injury in 
humans usually originates in traffic accidents, falls, criminal activity, degenerative changes 
of the vertebral column. Less frequently, medullary lesion develops due to ischaemia-
reperfusion injury during an aortic reconstruction (Salzano et al. 1994; Cheung et al. 
2005; Hachem et al. 2017; Rouanet et al. 2017). The mechanisms of canine and feline 
medullary lesions are similar, but the most common cause of an acute SCI in dogs is 
spondylosis/intervertebral disc disease, followed by fibrocartilaginous embolism (FCE), 
and trauma; in cats, trauma dominates, followed by intervertebral disc disease, and FCE 
(Griffiths 1978; Olby et al. 2003; Mikszewski et al. 2006). Critical situations are 
traffic accidents, falls, animal-animal or human-animal interactions, marked degenerative 
changes of the vertebral column, intervertebral disc extrusion/herniation, and ischaemia-
reperfusion caused by FCE (Olby 2010; Henke et al. 2013; DeRisio 2015; DeDecker 
et al. 2017).

Pathomechanism

Spinal cord injury is a complicated process divided into two phases (Olby 2010; 
Oyinbo 2011; Teh et al. 2017). Following a short period of ischaemia-reperfusion or 
mechanical trauma, spinal cord cells can become necrotic, fully or partially recover, 
or enter a path leading to programmed cell death (apoptosis) (Polderman 2009). The 
primary injury (phase) lasts for a maximum of 2 h and can result in relatively localized 
tissue destruction (Beattie et al. 2002; Park et al. 2004; Anwar et al. 2016; Visavadia 
et al. 2016; Rouanet et al. 2017; Hachem et al. 2017). Within minutes after the initial 
impact, a secondary injury (phase) starts, usually divided into acute (lasting 2–48 h), 
subacute (48–14 d), transitional (14 d–6 m), and chronic phase (˃ 6 m). The secondary 
injury processes mediated by a cascade of multiple pathologic events include haemorrhage, 
breakage of the microvascular bed, vasospasm, ischaemia, mitochondrial damage and 
dysfunction, cell membrane leakage, disruption of the blood spinal cord barrier, oedema 
formation, ion pump derangement, an intracellular shift of Ca2+ and Na+, an extracellular 
drift of K+, excessive release of neurotransmitters, free radical production (O2, NO, H2O2, 
OH), the release of excitotoxic amino acids (especially glutamate), and prostaglandins, 
lipid peroxidation, influx of immune cells (neutrophils, T-lymphocytes, macrophages, 
monocytes), the release of cytokines, apoptosis, calpain-mediated proteolysis, and 
DNA damage. During the secondary injury phase, the size of the primary lesion will 
spread to the healthy surrounding area and cause extensive SC tissue destruction 
(Beattie et al. 2002; Park et al. 2004; Olby 2010; Oyinbo 2011; Anwar et al. 2016; 
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Teh et al. 2017). An important point is that all the above-mentioned processes are 
temperature dependent – they are stimulated by fever and mitigated by hypothermia 
(Rokkas et al. 1995; Nishi et al. 2007; Dietrich et al. 2009; Polderman 2009; Grulova 
et al. 2013; Karnatovskaia et al. 2014; Spetzler et al. 1988).

Therapeutic capacity of TH

Numerous experimental studies as well as clinical experiences have demonstrated the 
significant protective influence of TH (defined as a controlled induction of subnormal 
body temperature in a homeothermic organism) in cases of extensive soft tissue contusion 
or inflammation, hyperpyrexia, sudden cardiac arrest when the return of spontaneous 
circulation has been achieved but coma persists, complex cardiovascular or neurosurgical 
interventions, ischaemic stroke, neonatal ischaemic or hepatic encephalopathy, as well 
as acute traumatic brain injuries (Spetzler et al. 1988; Salzano et al. 1994; Cambria 
et al. 2000; Cheung et al. 2005; Casas et al. 2005; Kwon et al. 2008; Al Sibae et al. 
2009; Dietrich et al. 2009; Lakhan and Pamplona 2012; Varon et al. 2012; Batchelor 
et al. 2013; Wei et al. 2013; Soleimanpour et al. 2014; Wassink et al. 2014; Kim 
et al. 2016; Brodeur et al. 2017; Martinello et al. 2017; Kafka et al. 2020). Remarkable 
attention of neurotraumatologists as well as the SCI community has been paid to reports 
describing significant improvement of complete tetraplegia or paraplegia caused by acute 
spinal trauma following application of TH or TH in combination with methylprednisolone 
administration, surgical decompression and vertebral column stabilization (Levi et al. 
2010; Dididze et al. 2012; Hansebout and Hansebout 2014; Cappuccino et al. 
2017). The beneficial effects of TH are executed by retardation of basic enzymatic activity, 
reduction of oxygen consumption and energy demands, increased adenosine triphosphate 
storage, maintenance of physiological transmembrane ion gradients, amelioration of the 
disruption of the blood spinal cord barrier, suppression of oedema formation, axonal 
swelling, and development of gliosis, reduction of oxidative stress, free radical generation, 
glutamate excitotoxicity, metalloproteinase-mediated extracellular matrix damage, 
inflammatory cell infiltration, delay, and suppression of the release of proinflammatory 
cytokines and noxious neurotransmitters, mitigation of the calpain-mediated proteolysis 
and mitochondrial membrane permeabilization – a point-of-no-return in apoptosis 
(Beattie et al. 2002; Morino et al. 2008; Alkabie and Boileau 2016; Ahuja et al. 
2017; Gedrova et al. 2018; Zavodska et al. 2018; Kafka et al. 2020). Whether apoptosis 
will develop is determined by cellular processes such as mitochondrial dysfunction, 
disorders in cellular energy metabolism, and release of caspase enzymes. Importantly, TH 
can interrupt the apoptotic pathway leading to cell death at early stages of the process 
(Polderman 2009). Some authors imply that cold-induced proteins play one of the key 
roles in hypothermia neuroprotection, especially the cold-inducible RNA-binding protein 
(CIRBP) and cold-inducible RNA-binding protein motif 3 (RBM3). They are expressed in 
low doses by cells of the human pancreas, heart, thyroid gland, and also in the brain, lungs, 
stomach, and spinal cord of rats. They protect the central nervous system against various 
toxic insults and are able to interrupt the apoptotic pathway in hypothermic conditions, 
when their expression is enhanced (Zhu et al. 2016).  

Application of TH

There are two basic techniques for induction and maintenance of TH/TTM – local 
(regional) and systemic (general) TH (Cambria et al. 2000; Dididze et al. 2012; Ok 
et al. 2012; Kaneko et al. 2017; Gedrova et al. 2018). Clinical use of TH/TTM in humans 
requires deep sedation or general anaesthesia, and permanent monitoring of physiological 
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functions (Varon et al. 2012; Karnatovskaia et al. 2014; Kafka et al. 2020). In 
animals, general anaesthesia accompanied by monitoring is a necessary prerequisite for 
the application of this method (Yoshitake et al. 2007; Brodeur et al. 2017; Zavodska 
et al. 2018).

Local (regional) TH
This technique permits much deeper cooling of the spinal medulla (targeted epidural 

temperature 4–6 °C) along with maintenance of physiological values of core body (rectal) 
temperature (Alkabie and Boileau 2016; Zavodska et al. 2018). To minimize variability 
in rectal temperature during TH and side effects of temperature management, the patients 
or experimental animals should be covered with an isothermal foil. If rectal temperature 
drops below 36 °C, the human or animal patient can be heated by warm air blown below 
the covering blanket (Gedrova et al. 2018; Zavodska et al. 2018). Several physical 
methods are used to achieve and maintain local TH. Transcutaneous cooling of the brain 
is usually executed by cold water circulating through a special helmet or tubing placed 
against the surface of the head (Kwon et al. 2008; Kafka et al. 2020). In emergency 
situations, the transcutaneous cooling of the spinal medulla is usually performed by ice-
cold pads or heat exchangers placed on the skin above the paravertebral muscles in the 
region of spinal trauma (Morochovic et al. 2008; Howes et al. 2010; Hansebout and 
Hansebout 2014). However, the temperature exchange can be limited by a thick layer of 
subcutaneous fat in obese individuals. In such situations, the surface cooling technique is 
less reliable (Jung et al. 2015). Hence some authors reduce the temperature of damaged 
SC tissue by paravertebrally implanted silicone or copper tubing cooled by circulating 
cold water, epidurally (through laminectomy) implanted heat exchangers or special 
chambers perfused with cold saline, Ringer’s solution, eventually cell culture media, such 
as Dulbecco’s Modified Eagle’s Medium (DMEM), or enriched DMEM (e-DMEM), i. e. 
Dulbecco’s Modified Eagle’s Medium supplemented by fibroblast growth factor, brain-
derived neurotrophic factor, glial cell-derived neurotrophic factor, vascular endothelial 
growth factor and creatine (Yoshitake et al. 2007; Hansebout and Hansebout 2014; 
Kaneko et al. 2017; Teh et al. 2017; Kafka et al. 2020). Another alternative is a direct 
intrathecal lavation of the epicentre of the SC lesion by the above mentioned cooling 
solutions (Gedrova et al. 2018; Zavodska et al. 2018). The positive effect of TH is 
expressed by improvement of motor functions, preservation of SC white matter, grey 
matter, and neurofilaments. The locomotion in rodents is usually assessed by the BBB 
scale (Basso et al. 1995). The 21 point scale can be used for the same purpose in minipigs 
(Gedrova et al. 2018). The volume/percentage of preserved white matter and grey matter 
is evaluated in histological sections stained by Luxol fast blue and Cresyl violet, the rate of 
preserved neurofilaments in SC specimens processed by monoclonal anti-filament marker 
SMI 312 (Casas et al. 2005; Yoshitake et al. 2007; Morochovic et al. 2008; Grulova 
et al. 2013; Henke et al. 2013; Zavodska et al. 2018). Some basic facts related to local 
(regional) application of therapeutic TH are presented in Table 1. 

General (systemic) TH
According to the reduction of core body temperature, TH is classified as profound 

(˂ 30 °C), moderate (30–32 °C), modest (32–34 °C) and mild (35–35.5 °C) (Polderman 
2009). There are two basic approaches to reduce the whole body temperature and maintain 
TH: physical and pharmacological. Surface cooling with ice packs or heat-exchange devices 
applied to the axillae and groins, cold air or water circulating blankets, cold wrapping 
garments or vests, and internal cooling techniques using intravenous infusions of cold 
saline, gastric or rectal administration of cold non-irritant solutions provide for physical 
TH (Polderman et al. 2009; Karnatovskaia et al. 2014; Cappuccino et al. 2017; 
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Table 1. Selected studies reporting on local application of therapeutic hypothermia. 

Study Subjects/level of SCI Time to TH/interventions Outcome
Hansebout and 20 humans, 14 C, 6 T 3.3–12 h, d. temp. 6 °C, ASIA A 7 pts
Hansebout 2014 mean age 26.5 y c. t. 3.7 h, steroids, ASIA B 6 pts
 14 C, 6 T decompression ASIA C 5 pts
   ASIA D 2 pts

Gedrova et al. 2018 F M-G-L m-pigs, SCI to TH 30 m, recovery of m.f.
 SCI at L3 level, epidural TH with signif. exceeded
 i. f. 8N saline 4 °C, c. t. 5 h non-treated anim.,
   signif. lesser
   damage of WM,
   GM, and NFs

 F M-G-L m-pigs, SCI to TH 30 m, recovery of m. f.
 SCI at L3 level, epidural TH with ≈ equal score as
 i. f. 8N DMEM 4 °C, non-treated anim.,
  c. t. 5 h n. s. diff, in damage
   of WM, GM, NFs

 F M-G-L m-pigs, SCI to TH 30 m recovery of m. f.
 SCI at L3 level, epidural TH with exceeded non-treated
 i. f. 15N saline 4 °C, c. t. 5 h anim. by 1 point, sign.
   diff. in GM, n. s. diff.
   in WM and NFs

Zavodska et al. 2018 F M-G-L m-pigs, SCI to TH 30 m recovery of m. f.
 SCI at L3 level, intrath. adm. ≈ equal score as non-
 i. f. 18N saline 4 °C, treated anim., sign.
  c. t. 5 h diff. in WM, diff. in
   GM and NFs n. s.

 F M-G-L m-pigs, SCI to TH 30 min. recovery of m. f.
 SCI at L3 level, intrath. adm. ≈ equal score as non-
 i. f. 18N DMEM 4 °C, treated anim., diff. in
   WM, GM, NFs n. s.

 F M-G-L m-pigs, SCI to TH 30 min  recovery of m. f.
 SCI at L3 level, intrath. adm. exceeded non-treated
 i. f. 18N e-DMEM 4 °C, anim. by 3 p., sign.
  c. t. 5 h diff. in WM, GM, NFs

 F M-G-L m-pigs, SCI to TH 30 min. recovery of m. f.
 SCI at L3 level, epid. adm. ≈ equal score as non-
 i. f. 18N saline 24 °C, treated  anim., sign.
  c. t. 5 h diff. in WM, GM, NFs

ASIA - American Spinal Injury Association impairment scale (ASIA 2015); C - cervical; c. t. - cooling time; 
diff. - difference;  d. temp. - dural temperature; DMEM - Dulbecco’s Modified Eagle’s Medium; e-DMEM - 
enriched DMEM; epid. adm. - epidural administration F - female; GM - grey matter; h - hour; TH - therapeutic 
hypothermia; i. f. - impact force; intrath. adm. - intrathecal administration; M - male; m - minute; M-G-L m-pigs 
- Minnesotta-Göttingen-Liběchov minipigs; N - Newton; NFs - neurofilaments; n. s. -  non-significant; p. - point; 
SCI - spinal cord injury; sign. - significant; T - thoracic; y - year; WM - white matter
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Kafka et al. 2020). Pharmacological TH is related to the administration of drugs influencing 
the brain’s thermoregulatory centre, e.g. cannabinoids, opioid receptor activators, 
neurotensins, thyroxine derivates, dopamine receptor activators, TH-inducing gases, 
adenosine and adenine nucleotides (Polderman et al. 2009; Kafka et al. 2020). However, 
pharmacological interventions also have their limitations, as each organism may reveal 
different drug tolerance and the application of any medicament may disturb the metabolic 
and/or circulatory balance of the body. To reduce potential side effects of medicaments 
and shorten the time window until the targeted core body temperature is achieved allows 
a combination of physical cooling methods with hypothermic drugs administration (Jung 
et al. 2015). Table 2 presents some basic facts related to the application of systemic 
(general) TH.

Studies dealing with the clinical use of general TH call attention to three important phases 
of its application, which significantly influence the outcome. They include the induction 
of TH, duration of the cooling and maintenance period, and the rewarming period (Dietrich 
et al. 2009; Lakhan and Pamplona 2012; Varon et al. 2012; Gong et al. 2013; Kafka 
et al. 2020).

The induction phase (cooling) should be initiated as soon as possible after SCI and the 
reduction of core temperature should be rapid (Howes et al. 2010).

The maintenance phase (duration of TH application) usually depends on the severity 
of the initial injury, the time interval between the SCI and the moment the target temperature 
is achieved, and the preference of the authors. The main aim is to thoroughly control core 
temperature, with fluctuations restricted to a maximum of 0.2–0.5 °C (Kwon et al. 2008; 
Polderman et al. 2009; Dididze et al. 2012).

Table 2. Selected studies reporting on systemic application of therapeutic hypothermia.

Study Subjects/level of SCI Time to TH/interventions Outcome
 initial ASIA
Levi et al. 2010 14 humans / 14 C, 9.17 ± 2.24 h, 33 °C, ASIA A 8
 sex unlisted c. t. 47.6 ± 3.1 h, ASIA B 3
 m. a. 39.4 y (16–62) duration TH 93.6 ± 4 h, ASIA C 2
 ASIA A decompression, no steroids ASIA D 1

Dididze et al. 2013 35 humans (27M, 8F), SCI to TH 5.76 ± 0.45 h, ISNCSCI A 20
 m. a. 36.1 y (18–65)  33 °C, c. t. 46.8 ± 1.7 h, ISNCSCI B 6
 35 C region, duration TH 113.6 h, ISNCSCI C 4
 ASIA A decompression, no steroids ISNCSCI D 4
   ISNCSCI E 1

Cappuccino et al. 2017 1 man, 25 y, C, ext. c. 15 m post SCI, ASIA D   
 ASIA A  intravasc. TH 34.5–35.2 °C 4 mths post SCI
  during surg ≈4 h, steroids,
  decompression; 20 h post op.
  TH 33.5 °C ≈36 h, then rwm

ASIA - American Spinal Injury Association impairment scale (ASIA 2015); C - cervical; c. t. - cooling time; 
ext. c. - external cooling; F - female; h - hour; TH - therapeutic hypothermia; ISNCSCI - International Standards 
of Neurological Classification of Spinal Cord Injury (ASIA 2019); M - male; m. a. -  mean age; m - minute; 
mth - month; op - operation; rwm - rewarming; surg - surgery; y - year. 
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The rewarming phase (reestablishment of normal core temperature) should be slow, 
about 0.1–0.2 °C/h). In SCI patients this phase usually lasts 24–36 h. Rewarming should 
not exceed 37 °C (Kwon et al. 2008; Jung et al. 2015).

Side effects of TH
Therapeutic hypothermia inhibits cellular metabolism by 5–8% per 1 °C and induces 

several important changes throughout the body of homoiothermic organisms (Polderman 
2009; Batchelor et al. 2013; Kafka et al. 2020). Reduction of the core body temperature 
causes shivering, piloerection, and cutaneous vasoconstriction, insulin resistance, reduction 
of metabolic rate, a decrease of oxygen consumption, and carbon dioxide production, 
disturbance of electrolyte stability, impairment of immune, cardiovascular, haemodynamic 
and renal functions, as well as coagulation and wound healing (Mercer 1991; Polderman 
2009; Soleimanpour et al. 2014).

Shivering, piloerection, and cutaneous vasoconstriction
Stimulation of cold receptors leads to rapid physiological reactions aiming to maintain 

thermal balance in endothermic vertebrates. These reactions are defensive and offensive. 
The defensive response (mediated by the sympathetic nervous system) is characterized 
by piloerection, vasoconstriction of cutaneous and subcutaneous vessels, increase 
of vascular resistance, shift of blood flow from the skin and extremities to intrathoracic and 
intraabdominal organs (Brodeur et al. 2017). The offensive response to the stimulation 
of cold receptors is shivering, i.e. a muscle activity that generates heat in humans as 
well as in birds and mammals (Mercer 1991; Howes et al. 2010). In awake patients, 
shivering induces unfavourable effects that are mainly linked to enhanced haemodynamic 
and respiratory demands of skeletal muscles. Shivering complicates TH induction, leads 
to a significant increase in the metabolic rate, accompanied by tachycardia, tachypnoea, as 
well as increased oxygen consumption (about 40–100%), and is very uncomfortable for the 
patient (Mercer 1991; Polderman 2009; Karnatovskaia et al. 2014). So, it is important 
to prevent and aggressively treat this phenomenon. The shivering is usually effectively 
controlled by sedatives, low doses of narcotics, and muscle relaxants (Polderman 2009). 
Most human patients undergoing therapeutic TH require deep sedation, but general 
anaesthesia, intubation, muscle relaxation, and mechanical ventilation are more convenient 
(Martirosyan et al. 2017). In animals treated by TH, general anaesthesia, intubation, and 
mechanical ventilation are fully indicated (Mercer 1991; Varon et al. 2012; Brodeur 
et al. 2017; Kaneko et al. 2017; Gedrova et al. 2018; Zavodska et al. 2018).

Cardiovascular effects
Even mild induced TH (˂ 35.5 °C) can elevate the release of catecholamines, increase 

cardiac output, myocardial oxygen demand, cause haemodynamic imbalance and changes 
in ECG. They are characterised by sinus bradycardia associated with prolongation 
of PR and QT intervals, and QRS complex, ST segment elevation, T wave depression, 
occurrence of Osborn waves, sometimes AV blocks of the 1st–2nd grade (Soleimanpour 
et al. 2014). Moderate TH (32–34 °C) leads to diastolic as well as systolic dysfunction, 
a decrease of cardiac output (by about 25%), and sinus bradycardia (45–40/min). The shift 
of blood volume from the peripheral circulation to the central vessels and increased arterial 
resistance cause a slight elevation of central venous pressure as well as blood pressure. 
The reduction in cardiac output due to TH is approximately equal to the lowered metabolic 
demand of the organism (Polderman 2009; Karnatovskaia et al. 2014). TH-induced 
circulatory changes usually do not require treatment. If bradycardia becomes a problem, 
atropine is not effective, but the slight increase of a core temperature can help. In serious 
cases, a pacemaker should be applied (Polderman 2009).
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Metabolic effects
Therapeutic hypothermia decreases the metabolic rate, decreasing O2 consumption and 

CO2 production by the same percentage (Aslami et al. 2010). Accordingly, blood gas 
levels should be monitored and the ventilator rate adjusted to prevent the development 
of hypocapnia (causing alkalosis leading to cerebral vasoconstriction and brain ischaemia). 
The increase of arterial partial pressure of oxygen (PaO2) may enhance the risk of spinal 
cord reperfusion injury (Polderman 2009; Karnatovskaia et al. 2014). Therapeutic 
hypothermia also causes an increase in fat metabolism, leading to increased glycerol, free 
fatty acids, ketones, and lactate concentrations. This, in turn, can cause mild metabolic 
acidosis, however, the phenomenon does not require therapeutic intervention (Aslami 
et al. 2010; Karnatovskaia et al. 2014). Another consequence of TTM is decreased insulin 
secretion accompanied by moderate (sometimes severe) insulin resistance in the majority 
of patients. To maintain glucose concentrations within an acceptable range, a significant 
increase in doses of insulin is necessary (Polderman 2009). The temperature dependence 
of insulin requirements is particularly important in the rewarming period of the procedure, 
when insulin sensitivity may return rapidly to normal and induce severe hypoglycaemia/
hypoglycaemic shock (Polderman 2009; Karnatovskaia et al. 2014).

Wound healing and infection
Systemic TH is associated with an increased risk of development of wound, respiratory, 

and urinary tract infections, decubital sepsis as well as impaired wound healing (Brodeur 
et al. 2017). These complications are attributed to the peripheral vasoconstriction, 
decreased pool of circulating leukocytes, diminished release of white blood cells from 
bone marrow, upregulation of immunosuppressive cytokines secretion, compromised 
migration of leukocytes and phagocytes into tissues as well as TH-induced insulin 
resistance and hyperglycaemia (Kwon et al. 2008; Geurts et al. 2014; Karnatovskaia 
et al. 2014; Brodeur et al. 2017). That is why a prophylactic antibiotic administration 
is recommended, and prevention of bedsores (decubital necroses) in paralytic humans/
animals is particularly important (Kim et al. 2016). Special care should be directed to 
wounds, surgical incisions, endotracheal and intravenous cannulas and urinary catheters 
(Geurts et al. 2014; Soleimanpour et al. 2014).  

Haemocoagulation
Reduction of body temperature increases susceptibility to bleeding and extends the 

bleeding time. The effects of TH on coagulation are direct (inhibition of enzymatic clotting 
processes), and indirect (transient thrombocytopaenia, restricted platelet aggregation). 
Thrombocytopaenia and impaired platelet clustering are mainly caused by the sequestration 
of thrombocytes in the spleen and liver. The problem is solved when platelets re-enter 
the circulation after rewarming (Karnatovskaia et al. 2014). Since blood is warmed 
for standard prothrombin/activated partial thromboplastin time (PT/aPTT) testing, these 
analyses will not reflect the real situation. Rewarming will facilitate the restoration 
of normal haemocoagulation activity, so the administration of plasma products is not 
indicated (Polderman 2009; Brodeur et al. 2017). 

Renal system
Cold-induced increase of the urine output in hypothermic patients occurs due to 

suppression of ADH production, shunting of peripheral blood to central vessels, and 
decreased reabsorption of solutes in the ascending loop of Henle (Polderman 2009). Cold 
diuresis also supports renal excretion of electrolytes and medicaments such as vasopressors, 
myorelaxants, phenytoin, sedatives and opiates. Potential electrolyte abnormalities 
are hypophosphataemia, magnesium deficiency, and hypokalaemia (Karnatovskaia 



197

et al. 2014). An untreated cold diuresis leads to hypovolaemia, haemoconcentration, and 
an increase of blood viscosity (2% per 1 °C of core temperature drop). The negative effects 
of induced TH on renal functions should be anticipated, serum electrolytes regularly 
monitored, and every disorder promptly compensated for (Karnatovskaia et al. 2014; 
Brodeur et al. 2017). 

Conclusion
Considering that the optimal target temperature after an acute SCI, time interval between 

SC trauma and induction of TH, duration of the cooling period, application of TH in 
combination with other therapeutic and/or neuroprotective procedures have not been 
defined so far, these variables should be thoroughly scrutinized. The currently available 
information on the therapeutic capacity of TH/TTM justifies a realization of further 
preclinical and clinical trials to evaluate all uncertain issues.  
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