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Abstract
The antimicrobial effect of light at specific wavelengths is currently used for sanitation 

procedures in various types of facilities. The aim of this study was to verify the bactericidal 
and fungicidal activity of 405 nm light as a safer alternative to ultraviolet C (UVC) radiation 
that could be used for disinfection in animal housing. Commercially available lamp located 
in the experimental room was used to emit the 405 nm radiation. For most of the bacterial species 
tested, there was no decrease in colony forming units after 8-h and 24-h radiation. Significant 
(P < 0.01) reduction in the number of colonies was observed for 8-h and 24-h radiation application 
in the case of Bordetella bronchiseptica when grown on trypticase soy agar. There was also 
a significant reduction (P < 0.01) in the number of colonies for Staphylococcus aureus on 
trypticase soy agar after 24-h radiation exposure. The results indicate a partial bactericidal effect 
of radiation depending on the type of bacterium irradiated, the type of nutrient medium used and 
the duration of radiation exposure. However, the effect of the method used in this study cannot 
be described as disinfectant. In the context of practical application of the technology, the factors 
mentioned above need to be further investigated.

Disinfection, light spectrum, prevention

Environmental sanitation in facilities with large numbers of animals is the key strategy 
to prevent the spread of pathogens. Although chemical disinfectants are among the tools 
traditionally used for microbial load control, with increasing knowledge there has also been 
an increase in interest in the development of new decontamination technologies (Maclean 
et al. 2014). One of these technologies is the use of the natural properties of light. The 
antimicrobial effects of light at specific wavelengths are now the subject of scientific work, 
with particular attention being paid to wavelengths falling in the ultraviolet spectrum. 
Ultraviolet C (UVC) radiation with a wavelength of 240–260 nm is being commonly used 
to decontaminate air and medical devices (Andersen et al. 2006; Reed 2010) for its effect 
of inactivation of bacterial, viral, and fungal agents (Tseng and Li 2007; Nakpan  et al. 
2019). Although this technology shows satisfactory disinfection potential, its negative side 
effects on the organism limit its use to unoccupied spaces only (Leung and Ko  2021). The 
main ones include the harmful effects on the eyes and skin, or more severely, genotoxic 
effects (Sterenborg et al. 1988; Sliney  2013).

The germicidal activity of blue light in the 405 to 450 nm range has been described 
as an alternative to UVC radiation with the advantage of use even in the presence of 
animals and humans. The underlying mechanism of microbial inactivation is thought to be 
related to light absorption by the photosensitizers porphyrins and flavins (Dai  et al. 2012; 
Bumah  et al. 2017). Exposure to light of this wavelength induces an oxygen-dependent 
photoexcitation in exposed cells, where the excited porphyrins react with oxygen or cellular 
components to form reactive oxygen species (ROS), causing oxidative damage and cell 
death (Maclean  et al. 2008). The generation of ROS is associated with direct damage 
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to biomolecules (proteins, lipids, and nucleic acids), which are essential components 
of pathogen cells. Previous studies document that ROS can lead to loss of cell membrane 
permeability mediated by lipid oxidation (Hadi et al. 2020). It has also been found that 
partial damage of bacterial cell is enough to make it more susceptible to inactivation by 
light. This suggests the practical use of 405–450 nm light at least in the context of final 
decontamination, i.e., its application after a previous disinfectant application that has 
already resulted in partial disruption of bacterial activity (McKenzie et al. 2014). Recent 
studies document the use of blue light in disinfection in the food industry (Wu et al. 2022) 
but also in the treatment of dental infections, acne, and fungal skin infections (Al Hamzi 
et al. 2019; Bumah  et al. 2020; Zhao  et al. 2022). Blue light has also been used to 
successfully treat burns and wounds in mice (Zhang et al. 2014). Amodeo et al. (2023) 
conducted a study in a hospital setting. Although 405 nm radiation reduced microbial 
contamination, the authors also recommended the use of other disinfection methods.

Although the use of devices emitting light of these wavelengths in animal husbandry has 
great potential, information regarding its application in disinfection procedures is lacking. 
Therefore, the aim of this study was to investigate under experimental conditions the effect 
of 405 nm radiation generated by commercially manufactured equipment on selected 
pathogenic bacteria that may be present in these facilities.

Materials and Methods 
Bacterial strains and agar media

The following strains were used in this study: reference strains Escherichia coli ATCC 25922 and Staphylococcus 
aureus ATCC 25923; isolates provided by the diagnostic laboratory of the Department of Infectious Diseases 
and Microbiology, Salmonella enterica serotype Typhimurium dgc, Pseudomonas aeruginosa 706/23, Bordetella 
bronchiseptica 632/23, Pasteurella multocida 136/23, Staphylococcus pseudintermedius 689/23, Streptococcus 
canis 484/22 and Enterococcus faecium 555/23.

Strains were revived from the glycerol cryostock and grown on Columbia blood agar (CBA) (OXOID, 
Basingstoke, UK) at 37 ± 0.5 °C for 24 h. All cultures were sub-cultivated before analysis. For analyses, CBA 
and trypticase soy agar (TSA) (BD, New Jersey, USA) were used. The volume of agar was adjusted to a standard 
depth of 4 mm. Prior to the experiments, the possible negative effect of radiation on the agar media was tested. 
Sterile open plates were irradiated from a height of 1 m. After exposure, a bacterial suspension was cultured 
on the plates. Suspension inoculated on non-irradiated agar served as a positive control. Plates were cultured for 
24 h at 37 °C, and the number of colony-forming-units (CFU) was evaluated.

Sample preparation
Well-isolated colonies from overnight culture were selected, suspended in phosphate buffered saline (PBS) 

and the density was adjusted to 1.0 McFarland (comparable to the density of a bacterial suspension with 
a 3 × 108 CFU/ml). The suspension was subsequently diluted in PBS up to 104 (S. aureus, S. canis), 103 (E. coli, 
S. enterica serotype Typhimurium, P. aeruginosa, S. pseudintermedius, E. faecium) and 102 (B. bronchiseptica, 
P. multocida) CFU/ml. One hundred µl of the diluted suspension was spread over surface of 4 CBA plates and 
4 TSA plates. 

Irradiation of bacterial strains
Exposure of bacterial pathogens to 405 nm radiation was carried out in the experimental room (fluorescence 

microscopy laboratory at the Department of Infectious Diseases and Microbiology, room dimensions 
4.0 × 1.6 × 2.6 m) using a commercially available device of a size 110 × 80 × 1000 mm mounted on the 
ceiling. The SPECTRA 1 spectrometer (Kvant, Bratislava, Slovakia) was used to verify the emission of light 
of the required wavelength.

The average ambient temperature during analyses was 31.7 °C, relative humidity 41% and the average CO2 
concentration was 450 ppm. Each analysis was repeated in two independent experiments. Open plates with 
inoculated bacterial suspensions were placed under the lamp at a distance of 1 m, so that the light fell directly 
on the surface of agar. One inoculated CBA and TSA plate was exposed to the radiation for 8 h, another CBA and 
TSA plate was exposed for 24 h. Positive control consisted of two inoculated CBA and TSA plates that were placed 
in the experimental room in a clean, sealed carboard box protected from the radiation for 8 and 24 h, respectively. 

Survivability testing
After irradiation, plates with bacterial suspensions were sealed and wrapped in a microtene bag to prevent 

further drying of the agar. Afterwards, they were cultured in a thermostat at 37 °C for 24 h. After 24 h, the number 
of colonies was counted.
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Statistical analysis
Data obtained in this study were analysed using Unistat 6.5 for Excel statistical software (Unistat Ltd, London, 

UK). The evaluation of differences between the number of colonies detected on the plates after experimental 
intervention and the number of colonies of the positive control (no intervention) for each bacterial species was 
performed by χ2 test. A P value ≤ 0.05 was considered significant.

Results
When testing possible negative effects of the radiation on agar media, no significant 

differences in bacterial growth on pre-irradiated plates compared to non-irradiated plates 
were observed (data not shown). 

Table 1 summarizes the results of the effect of radiation on each bacterial species tested. 
For most species, there was no decrease in colony counts caused by the 8- and 24-hour 
radiation. A significant difference (P < 0.01) between the number of colonies detected after 
8-h radiation (2 vs. 63 CFU/ml [0.3 log10 CFU/ml vs. 1.8 log10 CFU/ml] in the first trial, 
1 vs 46 CFU/ml [0 log10 CFU/ml vs. 1.66 log10 CFU/ml] in the second trial) and 24-h radiation 
(0 vs. 66 CFU/ml [0 log10 CFU/ml vs. 1.82 log10 CFU/ml] in the first trial, 0 vs. 64 CFU/
ml [0 log10 CFU/ml vs. 1.81 log10 CFU/ml] in the second trial) and the positive control was 
found for B. bronchiseptica when cultured on TSA. No significant difference in colony 
counts was found for this pathogen when CBA was used. On TSA, a significant difference 
(P < 0.01) in the number of colonies compared to the control (0 vs. 101 CFU/ml 
[0 log10 CFU/ml vs. 2 log10 CFU/ml] in the first trial and 0 vs. 97 CFU/ml [0 log10 CFU/ml 
vs. 1.99 log10 CFU/ml] in the second trial) was also found for S. aureus, but only in the case 
of 24-h exposure. Noteworthy, for most of the isolates tested, colony growth on agar could 
have been observed during 24-h light exposure already.

Table 1. Colony counts (log CFU/100 µl) for individual bacterial species irradiated by 405 nm wavelength light 
for 8 and 24 h. 

 1st trial 2nd trial

Species Agar 8 h 8 h  24 h 24 h  8 h 8 h  24 h 24 h 
 medium 405 nm¥ C+ 405 nm¥ C+ 405 nm¥ C+ 405 nm¥ C+
  (log10) (log10) (log10) (log10) (log10) (log10) (log10) (log10)

Escherichia coli CBA 2.36 2.40 2.34 2.40 2.31 2.40 2.40 2.36
 TSA 2.32 2.38 2.37 2.37 2.37 2.37 2.36 2.35

Salmonella Typhimurium CBA 2.44 2.45 2.42 2.45 2.49 2.48 2.45 2.48
 TSA 2.45 2.48 2.31 2.39 2.44 2.44 2.43 2.43

Pseudomonas aeruginosa CBA 2.35 2.38 2.36 2.30 2.39 2.37 2.37 2.41
 TSA 2.32 2.36 2.25 2.30 2.30 2.37 2.23 2.26

Bordetella bronchiseptica CBA 1.83 1.79 1.79 1.79 1.81 1.79 1.81 1.82
 TSA 0.30 1.80 0 1.82 0 1.66 0 1.81

Pasteurella multocida CBA 2.09 2.11 2.12 2.12 1.96 2.02 2.07 2.04
 TSA 0 0 0 0 0 0 0 0

Staphylococcus aureus CBA 2.02 2.01 2.02 2.03 2.06 2.05 2.01 2.04
 TSA 1.99 1.98 0 2.00 2.03 2.07 0 1.99

Staphylococcus pseudintermedius CBA 2.02 2.07 2.03 2.05 2.29 2.22 2.24 2.31
 TSA 1.96 2.06 1.97 2.02 2.28 2.28 2.18 2.26

Streptococcus canis CBA 2.05 2.00 1.99 2.01 2.01 2.04 2.00 2.06
 TSA 2.04 2.05 2.03 2.00 2.06 2.03 1.72 2.01

Enterococcus faecium CBA 2.24 2.27 2.26 2.19 2.26 2.27 2.26 2.21
 TSA 2.26 2.34 2.26 2.26 2.23 2.25 2.24 2.23
¥ Plates irradiated by 405 nm light; C+: non-irradiated plates, positive control; CBA: Columbia blood agar; 
TSA: trypticase soy agar
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Discussion

Visible light perceived by the naked eye is part of the electromagnetic spectrum, with 
wavelengths from 380 to 700 nm. Studies of the germicidal properties of the UV spectrum, 
focusing on its upper and lower limits, have attracted the interest of the scientific community. 
Visible violet-blue light with a wavelength of 405–470 nm has shown promising results 
in the disinfection of surfaces and air (Maclean et al. 2014). Previous studies suggest 
antimicrobial properties through which inactivation of microorganisms including bacteria, 
viruses and fungi occurs (Amodeo et al. 2022; Frilli et al. 2023). The mechanism 
of action of violet-blue light is based on production of ROS, which can damage the cellular 
components of microorganisms and lead to cell death (Maclean et al. 2008). Given the 
high microbial load that is typical for environments with higher animal numbers, the aim 
of our study was to validate the inactivation activity of 405 nm wavelength light emitted 
by a commercial device and its practical application.

Although there was a decrease in the number of microorganisms found in our experiment, 
the resulting decrease was not sufficient to be evaluated as disinfectant. A reduction of five 
logarithmic orders of magnitude in the number of microorganisms is required to achieve 
a disinfectant effect according to the Czech technical standard 1656 (665208) for the 
minimum requirements for bactericidal activity of chemical disinfectant and antiseptic 
products used in the veterinary field.

The results of our experiment indicate only partial efficacy in the inactivation process 
of the selected microorganisms. For most of the isolates tested, there was no reduction 
in colony counts due to radiation after 8 or 24 h of exposure. Reduction in numbers 
was only observed for B. bronchiseptica and S. aureus when applied on TSA, however, 
the same effect was not observed for CBA. The growth of bacteria can be affected by 
various influences. According to Kim et al. (2016), the factors influencing the outcome 
of irradiation include the choice of culture medium and environmental conditions. Recent 
studies document the amplified effect of radiation when pathogens are exposed on inert 
surfaces such as polyvinyl chloride (PVC) and acryl, in contrast to nutrient media (Murdoch 
et al. 2012). An amplified effect has also been found in the presence of biological material 
such as saliva, blood plasma and faeces as opposed to basal media (Tomb et al. 2017). 
Although nutrient media may contain photosensitive components likely enhancing the 
inactivation process, they on the other hand provide a more nutritious environment and 
greater protection against oxidative stress (Sinclair et al. 2023a). This could explain the 
difference in results when using the two types of agar media in our study - CBA enriched 
with 5% defibrinated sheep blood may have provided a more nutritious environment for the 
bacteria allowing protection against oxidative stress compared to TSA. 

The intensity of radiation is also a factor influencing the result. It appears that 
lower intensities (0.5 mW/cm) may be more effective as opposed to higher intensities 
(e.g., 50 mW/cm), according to Sinclair et al. (2023b). It is possible that this 
phenomenon is due to the specific energy levels required to induce photoexcitation 
of porphyrin molecules in exposed bacteria; the use of higher intensities may be 
ineffective due to saturation of the porphyrin photoexcitation pathway in the presence 
of excess photons, which therefore may not necessarily contribute to the inactivation 
process. In the case of lower intensities, photons can be used more efficiently with less 
wastage (Maclean et al. 2016).

Kim and Yuk (2017) mention that the sensitivity of cells to 405 nm radiation also differs 
between bacterial strains and serotypes. For example, E. coli strain ST131 was found to 
be more sensitive to the 410 nm blue light than strain ST648 (dos Anjos et al. 2019). 
In the case of Salmonella Typhimurium, the low amount of endogenous porphyrins in cells 
does not appear to generate sufficient ROS to disrupt cell membrane integrity. Different 
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bacterial species also produce different porphyrins; the absorption wavelengths may differ 
for different photosensitizers. In a practical context, it is a reason why is necessary to emit 
different wavelengths for optimal stimulation (Nitzan et al. 2004).

Our results are not consistent with the findings of Amodeo et al. (2022), who 
observed a reduction in bacterial growth in Salmonella Typhimurium (2.30 log10), E. coli 
(3.83 log10), and P. aeruginosa (3.86 log10) when plates were placed 2–3 m from a radiation 
source of 967 and 497 µW/cm. In a study by Sinclair et al. (2023a), complete or near-
complete inactivation of S. aureus, E. coli, K. pneumoniae, and P. aeruginosa occurred 
under radiation intensities ranging from 0.001 to 2.016 mW/cm; it was found that higher 
levels of bacterial inactivation were observed with increasing exposure time. Of the 
Gram-positive bacteria tested in the study, S. aureus was found to be the most sensitive 
species; it correlates with our findings where S. aureus was one of the three inactivated 
species. Increased sensitivity of S. aureus was also described in the study by Maclean 
et al. (2009). In a study by Hoenes et al. (2021), S. aureus and P. aeruginosa required the 
lowest radiation dose to achieve a 1 log10 reduction. In the study by Sinclair et al. (2023a), 
bacteria were approximately 1.5 m from the radiation source and were exposed for 4, 8, 
and 24 h. The authors further report that irradiance levels were highest in areas directly 
below the light source and lowest at the furthest measured points, which is confirmed by 
Boyce et al. (2016). A difference in inactivation of Gram-positive and Gram-negative 
bacteria was not observed in the study by Sinclair et al. (2023a), however, increased 
sensitivity of Gram-positive bacteria was observed for bacterial populations dispersed 
in liquid suspension irradiated with high doses of radiation in a non-nutrient environment 
over a short period of time (Murdoch et al. 2012; McDonald et al. 2013).

A major limitation of light-based technologies is their activity only on surfaces that are 
directly exposed to radiation; the effectiveness on covered or shaded surfaces is low, although 
it is reported that 405 nm radiation can pass through transparent materials (Amodeo 
et al. 2023). It is also important to note that, for practical use, radiation emitting devices 
should only complement, not replace, traditional forms of disinfection. Another issue is the 
safety of use when radiation generating devices run in the presence of animals and humans. 
Although light at 405 nm has germicidal activity, it is in a relatively harmless wavelength 
range and is considered safe when used at appropriately low intensities (Maclean et al. 
2013). Another advantage of using radiation is that it does not damage disinfected surfaces 
(Horton et al. 2020).

In conclusion, light of 405 nm wavelength has been previously found to have bactericidal 
activity against selected pathogen species, but the efficacy of its practical use may be 
significantly limited compared to the conditions tested in this study (application of shorter 
exposure time, different location of the pathogen to the light source, different climatic 
conditions, different composition of the natural carrier/medium in which the pathogen 
is dispersed). Another limitation of the application of the results obtained in this study 
in practice is the use of pathogens incubated in laboratory culture conditions, therefore their 
properties may differ significantly from those found naturally in the environment. Further 
investigation of the factors mentioned above is needed before applying the technology 
in practice. 

The results of our experiment show that light of 405 nm wavelength does not show 
sufficient disinfecting effect on selected bacteria. Although the radiation time lasted up to 
24 h, a sufficient disinfection effect was not achieved, where the microbial contamination 
should be reduced by five logarithmic orders of magnitude. An increase in the disinfection 
effect could have been achieved by influencing other environmental factors (temperature, 
humidity). In this case, any further decrease in bacterial counts would have been caused 
by deterioration of the environmental conditions rather than by the co-exposure to 405 nm 
light. 
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