SUSCEPTIBILITY OF LABORATORY RATS AND GUINEA-PIGS TO INFECTIOUS BURSAL DISEASE VIRUS INFECTION

J.O.A. OKOYE

Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria

Received June 10, 1986

Abstract

Young laboratory Wistar rats and guinea-pigs were infected intraocularly and orally with infectious bursal disease virus (IBDV) suspension which had bursal lesions 50 10^4.8 per 0.5 ml. Neither clinical signs nor gross or histopathological changes were observed. Visceral suspensions were negative for IBDV antigen 3 and 4 days post infection (PI) in agar gel diffusion precipitation test (AGDT). Faecal samples collected 1 - 3 days PI were also negative for IBDV antigen in AGDT. But 2 out of 3 guinea-pig sera collected 14 days PI were positive for IBDV precipitins while rat sera were negative. These observations show that IBDV infection in guinea-pigs could be subclinical.

Agar gel diffusion precipitation test, serum, viscera, faeces, post-infection days.

Infectious bursal disease (IBD) is primarily a disease of the domestic fowl (O k o y e 1984). The infection is subclinical in turkeys (W e i s m a n and H i t c h e r 1978; M c F e r r a n et al. 1980; P e r e l m a n and H e l l e r 1981 and 1982; C h u i and T h o r s e n 1984). Guinea-fowls, geese, ducks, quails, bantams and pigeons appear to be resistant (H i r o s e and H i r a i 1976; N a w a t h e et al. 1978; V i n d e v o g e l 1979). Reports of infection attempts in rodents which may be involved in the epidemiology of IBD in the farms have been very few. Experimental IBD has been described in mice by R i n a l d i et al. (1970), C a m m a r a t a et al. (1979) and B e s t e t t o et al. (1980). O k o y e and U c h e (1986) detected IBD precipitins in the tissues of wild rats killed with traps set in poultry farms with history of previous IBD outbreaks and suggested that the rats could be involved in the spread of IBD among poultry farms. This observation is further investigated in this project in which the response of laboratory rats and guinea-pigs to IBDV infections are studied.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Time of Collection PI</th>
<th>Aim of AGDT</th>
<th>Results of AGDT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No grouping</td>
</tr>
<tr>
<td>Rat sera</td>
<td>Day 0</td>
<td>For IBDV precipitins</td>
<td>0/5^a</td>
</tr>
<tr>
<td>Guinea-pig sera</td>
<td>Day 14</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 0</td>
<td>"</td>
<td>0/5</td>
</tr>
<tr>
<td></td>
<td>Day 14</td>
<td>"</td>
<td>2/3</td>
</tr>
<tr>
<td>Rat Viscera</td>
<td>Day 3</td>
<td>For IBDV antigen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 4</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Guinea-pig viscera</td>
<td>Day 3</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 4</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Rat faeces</td>
<td>Day 1</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 2</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td>Guinea-pig faeces</td>
<td>Day 1</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 2</td>
<td>"</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Day 3</td>
<td>"</td>
<td>-</td>
</tr>
</tbody>
</table>

^a = Number positive/total number tested
Materials and Methods

The virus

The IBD virus (IBDV) was obtained as 20% phosphate-buffered-saline (PBS) suspension of bursa of Fabricius of chickens that died of field cases of IBD. The suspension was found to have a bursal lesion50 (BL50) titre of 10^4.8 per 0.5 ml by method of Reed and Muench (1938). It was stored at -20°C until used. Young Wistar mice and guinea-pigs were used. Fifteen guinea-pigs were each given a total of 1 ml of the viral suspension intraocularly and orally, while 15 rats were each given a total of 0.4 ml of the inoculum via the same routes. The infected animals were reared separately from the uninfected controls which were the same in number and each was given the PBS diluent equal to the volume of inoculum given to the infected via the same routes.

Clinical signs and pathological changes

Animals were observed daily for clinical signs. Three in each group were sacrificed on days 3 and 4 post infection (PI) and examined for gross pathological changes. Spleen, thymus and kidney were processed, sectioned and stained with haematoxylin and eosin.

Virus identification in the organs and faeces

Infected and control animals sacrificed on days 3 and 4 PI were eviscerated and a 50% suspension of the internal organs without the lungs in PBS was prepared separately for each animal and tested for IBDV antigens by agar gel diffusion precipitation test (AGDT). Faecal samples were also collected from each group on days 1 - 3 PI. Twenty five % suspensions in PBS were prepared and tested for IBDV antigen in AGDT.

Test for IBDV precipitins

Blood samples were obtained from 5 guinea-pigs and 5 rats just before IBDV inoculation. Samples were also collected 14 day PI from 3 animals in each group. Sera were harvested and inactivated at 56°C for 30 min. and tested for IBDV precipitins in AGDT.

Agar gel diffusion precipitation test

The test was done with the method already described by Okoye and Uzoekwu (1981). For virus identification tests the positive control was known IBDV antigen while the negative control was normal bursal suspension. But in the tests for IBDV precipitins the positive control was a known IBDV antiserum while the negative control was a normal serum.

Results

Neither clinical signs nor gross or histopathological changes were observed in both infected and control groups. Agar gel diffusion tests for IBDV antigen identification in the organs and faeces were all negative for both infected and control animals. In the tests for precipitins in serum samples all the sera from infected and control rats were negative. Two samples out of the 3 from infected guinea-pigs were positive. The details of the serological results are shown in Table 1.

Discussion

The results of this investigation indicate that IBDV may not be pathogenic
to rats and guinea-pigs when given orally and intraocularly. Infection in
guinea-pigs appeared subclinical while no signs of infection was found in the
rats. However, AGDT has been found to be less sensitive than virus
isolation and immuno-fluoroscopy methods in the diagnosis of IBDV infection
(Ide 1975). This low sensitivity might have affected the results of this
experiment. But Okoye and Uche (1986) detected IBDV precipitins
in wild rat tissues using AGDT. Contrary results in this study could be
because the laboratory Wistar rats may be less susceptible or more resistant
to IBDV infection than wild rats. There could also be differences in the
doses of infection. Detection of serum precipitins in the guinea-pigs support
the suggestion that some rodent species which frequent poultry farms may be
involved in the spread of IBD (Okoye and Uche 1986). Failure to
detect IBDV precipitins in faeces of infected animals could be due to timing
of the collection or very limited multiplication of the virus. Further work is
still needed to determine the possible role of wild rodents in the epidemiology
of IBD, using more sensitive methods.

Citlivost laboratorních potkánů a morčat vůči viru infekční bursitidy

Mladé laboratorní potkany a morčata byly intraokulárně a orálně infiková-
y suspenzí viru infekční bursitidy (IBDV) s bursálním indexem $10^{4.8}$ v 0,5
ml. Klinické příznaky onemocnění ani patohistologické změny pozorovány nebyly.
Ve visceralních orgánech nebyl nalezen IBDV antigen 3 ani 4 dny po infekcii
za použití precipitace v agarovém gelu. Negativní byly i výsledky vyšetření
trusu odebraného 1 - 3 dny po infekci. V krevním séru 2 ze 3 infikovaných
morčat byly imunodifúzí prokázány IBDV precipitiny, zatímco séra potkanů
byla negativní. Tyto výsledky ukazují, že infekce IBDV může u morčat pro-
bíhat bez klinických symptomů.

Чувствительность лабораторных пасюков и морских свинок к вирусу
инфекционного бурсита

Молодых лабораторных пасюков и морских свинок инфицировали
внутриглазно и перорально суспензией вируса инфекционного бурси-
tа (IBDV) с бурсальным индексом $10^{4.8}$ в 0.5 мл. Клинических при-
знаков заболевания и патогистологических изменений не наблюдали.
Во внутренних органах не выявили IBDV антигена через 3 даже 4
dnya после заражения при использовании преципитации в агарном
геле. Отрицательными оказались также данные исследований кала,
vзятого через 1 - 3 дня после заражения. В сыворотке крови 2 из
3 инфицированных морских свинок путём иммунодиффузии установили
IBDV преципитины, тогда как сыворотки пасюков оказались отрица-
tельными. Полученные результаты показывают, что инфекция IЕДВ
может у морских свинок протекать без клинических признаков.

Acknowledgement

The author is grateful to M.C. Ugafor for assistance in the collection
of some samples from the experimental animals.
References

