Effects of Chromium Picolinate and Ascorbic Acid Dietary Supplementation on Nitrogen and Mineral Excretion of Laying Hens Reared in a Low Ambient Temperature (7 °C)

K. SAHIN1, N. SAHIN2
1Department of Animal Nutrition, Faculty of Veterinary, University of Firat, 23100 Elazig, Turkey
2Veterinary Control and Research Institute

Received November 26, 2001
Accepted June 19, 2002

Abstract

The effects of chromium (chromium picolinate, CrPic) and ascorbic acid (L-ascorbic acid) supplementation on nitrogen (N), ash and mineral retention in laying hens (Hy-Line) reared under a low ambient temperature (7 °C) was evaluated. One hundred and twenty laying hens (32-week-old) were divided into four groups, 30 hens per group. The laying hens were fed either a basal diet or the basal diet supplemented with either 400 µg of Cr/kg of diet, 250 mg of L-ascorbic acid/kg of diet, or 400 µg of Cr plus 250 mg of L-ascorbic acid/kg of diet. Retention of N, ash, Ca, P, Zn, Fe and Cr were highest with the combination of chromium and ascorbic acid and were lowest with the control diet (P < 0.05). Accordingly, excretion of N, ash Ca, P, Zn, Fe and Cr was lesser in chromium and ascorbic acid supplemented groups than the control (P < 0.05), that of combination of supplemental chromium and ascorbic acid being lowest. Results of the present study show that supplementing ascorbic acid and chromium, particularly as a combination, improved retention of mineral and decreased excretion of nitrogen, ash, Ca, P, Zn, Fe, and Cr in laying hens. Such a combination of supplementation can offer a potential protective management practice in preventing the detrimental effects of cold stress in laying hens. The results of the present study also show that chromium and vitamin C had additive effects on parameters measured at the present study.

Cold stress, chromium, ascorbic acid, mineral excretion, laying hen

Low ambient temperature causes some adverse effects including increased feed intake, and decreased egg production, nutrient digestibility, and feed efficiency in poultry (Sagher 1975; Arad and Marder 1982; Ensminger et al. 1990; Spinu and Degen 1993; Sari 1993). Environmental stress causes deficiencies in vitamin C (ascorbic acid) and chromium for poultry (McDowell 1989; NRC, 1997; Sahin and Sahin 2001). It has been reported that dietary ascorbic acid and chromium requirement in poultry was significantly affected by thermal stress and the negative effects of stress were prevented by ascorbic acid and chromium supplementation (McDowell 1989; Mowat 1994; NRC 1997; Sahin and Kucuk 2001; Sahin et al. 2001a; Sahin et al. 2002a). Dietary chromium supplementation has been shown to positively affect growth rate and feed efficiency of growing poultry (Cupo and Donaldson 1987; NRC 1997; Lien et al. 1999; Sahin et al. 2001b). These beneficial effects of Cr can be observed more efficiently under environmental, dietary, and hormonal stress (Anderson 1994; Wright et al. 1994). Supplemental dietary chromium is also recommended by NRC (1997) for animals undergoing environmental stress. Chromium stimulates and regulates the action of insulin (Anderson 1994; Mowat 1994) which is involved in anabolic processes (Colgan 1993). Also, through increasing the effectiveness of insulin, Cr indirectly potentiates
Ascorbic acid transportation (Mann and Newton 1975; Seaborn et al. 1994). In
addition, chromium is thought to be essential for activating certain enzymes and for

Ascorbic acid functions as a reducing agent and as an antioxidant. Previous studies have
shown that ascorbic acid is an indispensable micronutrient required to maintain the
physiological processes of certain animals including poultry (McDowell 1989). Poultry
are known not to require a dietary source of vitamin C because of the inability of birds to
synthesize its own. Pardue and Thaxton (1986) have documented evidence that
particular environmental stressors can alter ascorbic acid utilization or synthesis in avian
species. It has been also reported that ascorbic acid synthesis is inadequate under stress
conditions such as low or high environmental temperatures, humidity, high production rates,
and parasitic infestation (Sykes 1978; Hornig et al. 1984; McDowell 1989; Cheng
et al. 1990). Several researches have documented a beneficial effect of ascorbic acid
supplementation on growth rate and egg production in stressed-poultry (Thornton 1962;
McDowell 1989; Bains 1996). At temperatures above or below thermoneutral zone,
corticosteroid secretion increases in response to stress (Brown and Nestor 1973). By
decreasing synthesis and secretion of corticosteroids, vitamin C alleviates the negative
effects of stress such as cold stress-related depression in poultry performance (McDowell
1989). In evaluating the effects of supplemental chromium and ascorbic acid, nitrogen, ash
and mineral excretion and retention have a substantial merit in understanding metabolic
changes in cold-stressed poultry. Therefore, the objective of this study was to evaluate the
effects of chromium and ascorbic acid supplementation on retention and excretion of
nitrogen, ash and minerals in laying hens reared under a low ambient temperature (7 °C).

Materials and Methods

Animals

One hundred and twenty 32-week-old Hy-Line laying hens were obtained from a commercial company
recognized by Ministry of Agriculture, Turkey. No animal losses were observed throughout the experiment. The
experiment was in accordance with animal welfare, and was conducted under protocols approved by the Veterinary
Control and Research Institute of Elazig-Turkey.

Dietary Treatments and Experimental Design

The laying hens were fed the basal diet or the basal diet supplemented with either 400 µg of Cr/kg of diet, 250
mg of L-ascorbic acid /kg of diet, or 400 µg of Cr plus 250 mg of L-ascorbic acid/kg of diet. Ascorbic acid
(ROVIMIX® STAY-C® 35) was specifically produced as a stabilized source of vitamin C for feed by a commercial
company (Roche, Levent-Istanbul). Chromium Picolinate (CrPic, Chromax®, Prince Agri Products) was used as
chromium source. Ingredients and chemical composition of the basal diet are shown in Table 1. The basal diet was
a typical layer diet containing 11.6 MJ/kg and 17.6 % crude protein, and was calculated to meet or slightly exceed
the nutrient requirements recommended by the National Research Council (1994).

The hens were randomly assigned to four groups, 30 hens each, according to their egg production which were
similar among treatments. Water and the diets were offered ad libitum. The hen house was lit for 17 h per day.
During the experiment, hen house’s temperature and humidity were measured four times a day (at 06.00, 12.00,
18.00, and 24.00 h). Average ambient relative humidity inside the hen house was 64 ± 7%. The mean value of daily
temperature in the hen house was 7 ± 3 °C. Diets were fed for 15 wk between October 15th and January 30th.

Retention and Excretion of Nitrogen and Minerals

At the end of experiment, 6 hens per treatment were individually caged to determine retention and excretion of
dietary nutrients at the same low temperature. Nutrient retention was the amount retained per hen per day and was
calculated based on feed consumption and the calculated analysis of the nutrient in the feed. Excreta of hens were
collected for 3 days.

Laboratory Analyses

Chemical analysis of the diet and excrement samples were run using international procedures of AOAC (1990).
Excrement N was chemically analyzed according to the method of Terpstra and de Hart (1974). To determine
concentrations of Ca, Zn, Fe, and Cr, diet and excreta were dry-ashed (AOAC, 1990). Concentrations of Cr in diet
and excrement samples were measured using atomic absorption spectrometer containing a graphite furnace and
graphite tubes (Shimadzu AA-660-GFA-4B-P/N 204-03154-02). Calcium, Zn, and Fe concentrations were
measured at specific wavelengths for each element by using atomic absorption spectrometer. Calibrations for the mineral assays were conducted with a series of mixtures containing graded concentrations of standard solutions of each element.

Statistical Analyses

All data were analyzed by one-way ANOVA (GLM procedure of SAS; SAS Institute, 1996) to test for the effects of the dietary treatments. When a significant treatment effect was observed, a Duncan’s new multiple range test was used to compare means. Treatment effects were considered with the significant level at $P < 0.05$. Experimental unit was individual bird.

Results

The effects of supplemental dietary chromium and ascorbic acid on excretion and retention of nitrogen, ash and mineral in laying hens when exposed to a cold environment are shown in Table 2. A combination of chromium and ascorbic acid, rather than each separately, provided the greater nitrogen and mineral retention and lower excretion rates in laying hens exposed to a cold environment compared to the control group. Retention of N, ash, Ca, P, Zn, Fe and Cr were highest with the combination of chromium and ascorbic acid and were lowest with the control diet ($P < 0.05$). Accordingly, excretion of N, ash, Ca, P, Zn, Fe and Cr was lesser in the chromium and ascorbic acid supplemented groups than the control ($P < 0.05$), that of a combination of supplemental chromium and ascorbic acid being the lowest.

Discussion

It is known that poultry performance and nutrient digestibility decrease when ambient temperature goes below the thermo-neutral zone (Arad and Marder 1982; Ensminger et al. 1990; Sari 1993). At such temperatures, corticosteroid secretion increases in

Table 1

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Corn</td>
<td>63.05</td>
</tr>
<tr>
<td>Soybean Meal</td>
<td>22.75</td>
</tr>
<tr>
<td>Wheat Bran</td>
<td>1.68</td>
</tr>
<tr>
<td>Animal Fat</td>
<td>1.50</td>
</tr>
<tr>
<td>Limestone</td>
<td>8.54</td>
</tr>
<tr>
<td>Dicalcium Phosphate</td>
<td>1.40</td>
</tr>
<tr>
<td>Vitamin Premix</td>
<td>0.25</td>
</tr>
<tr>
<td>Mineral Premix</td>
<td>0.20</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.20</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>0.40</td>
</tr>
<tr>
<td>DM, %</td>
<td>91.10</td>
</tr>
</tbody>
</table>

Chemical Analyses (DM basis)

ME, MJ/kgc	11.6
Crude Protein, %	17.6
Calcium, %	4.2
Phosphorus, %	0.8
Zinc, mg/kg	28
Iron, mg/kg	36
Chromium, µg/kg	1.1

aMix supplied per 2 kg of diet: vitamin A, 15,500 IU; cholecalciferol, 2,500 IU; vitamin E, 15.5 IU; menadione, 2 mg; thiamin, 0.5 mg; riboflavin, 7 mg; d-pantothenic acid, 8 mg; pyridoxine, 2 mg; vitamin B$\text{_{12}}$, 0.15 mg; folate acid, 1.5 mg; niacin, 30 mg.

bMix supplied per 2 kg of diet: Mn, 80 mg; Fe, 60 mg; Zn, 50 mg; Cu, 7 mg; iodine, 0.3 mg; Se, 0.15 mg; choline chloride, 400 mg.

cCalculated from the tabular values (NRC, 1994).
Table 2

The effects of supplemental chromium and ascorbic acid on the nitrogen and minerals retention and excretion of laying hens reared at a low ambient temperature (n=6)

<table>
<thead>
<tr>
<th>Item</th>
<th>C</th>
<th>Cr</th>
<th>Vit C</th>
<th>Cr+Vit C</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention Nitrogen (g/hen/d, DM)</td>
<td>1.9a</td>
<td>2.4b</td>
<td>2.3b</td>
<td>2.7a</td>
<td>0.09</td>
</tr>
<tr>
<td>Ash (g/hen/d, DM)</td>
<td>6b</td>
<td>9b</td>
<td>6b</td>
<td>13a</td>
<td>0.5</td>
</tr>
<tr>
<td>Calcium (g/hen/d, DM)</td>
<td>2a</td>
<td>3b</td>
<td>3b</td>
<td>4a</td>
<td>0.02</td>
</tr>
<tr>
<td>Phosphorus (g/hen/d, DM)</td>
<td>0.2c</td>
<td>0.3b</td>
<td>0.3b</td>
<td>0.4b</td>
<td>0.005</td>
</tr>
<tr>
<td>Zinc (mg/hen/d, DM)</td>
<td>1c</td>
<td>2b</td>
<td>2b</td>
<td>3a</td>
<td>0.2</td>
</tr>
<tr>
<td>Iron (mg/hen/d, DM)</td>
<td>10b</td>
<td>13b</td>
<td>14b</td>
<td>17a</td>
<td>1</td>
</tr>
<tr>
<td>Chromium, (mg/hen/d,DM)</td>
<td>0.05c</td>
<td>0.07b</td>
<td>0.07b</td>
<td>0.08c</td>
<td>0.001</td>
</tr>
<tr>
<td>Excretion Nitrogen (g/hen/d, DM)</td>
<td>1.6a</td>
<td>1.5b</td>
<td>1.5b</td>
<td>1.3c</td>
<td>0.003</td>
</tr>
<tr>
<td>Ash (g/hen/d, DM)</td>
<td>10c</td>
<td>9b</td>
<td>9b</td>
<td>8c</td>
<td>0.2</td>
</tr>
<tr>
<td>Calcium (g/hen/d, DM)</td>
<td>2.5a</td>
<td>2.4b</td>
<td>2.4b</td>
<td>2.3c</td>
<td>0.05</td>
</tr>
<tr>
<td>Phosphorus (g/hen/d, DM)</td>
<td>0.6c</td>
<td>0.5b</td>
<td>0.5b</td>
<td>0.4c</td>
<td>0.002</td>
</tr>
<tr>
<td>Zinc (mg/hen/d, DM)</td>
<td>11c</td>
<td>10b</td>
<td>10b</td>
<td>8c</td>
<td>0.03</td>
</tr>
<tr>
<td>Iron (mg/hen/d, DM)</td>
<td>36c</td>
<td>33b</td>
<td>32b</td>
<td>30c</td>
<td>0.9</td>
</tr>
<tr>
<td>Chromium, (µg/hen/d,DM)</td>
<td>0.09a</td>
<td>0.07b</td>
<td>0.07b</td>
<td>0.06c</td>
<td>0.005</td>
</tr>
</tbody>
</table>

a,b,c,d: Mean values within a row with no common superscript differ significantly (P < 0.05).
*C: control (basal) diet, Cr: control diet +400 µg of Cr/kg, Vit C: control diet +250 mg of L-ascorbic acid/kg of diet, Cr+Vit C: control diet + 400 µg of Cr/kg + 250 mg of L-ascorbic acid/kg.
serum concentration of malonaldehyde (MAL), an indicator of lipid peroxidation, in stressed hens (Sahin et al. 2002b). An increase in retention of nutrients in laying hens in the present study could have been due to such positive effects of ascorbic acid and/or chromium. It has also been reported that in stressed-mice, loss of zinc, copper, iron and manganese was reduced by supplemental chromium (Schrauzer et al. 1986). Sahin and Sahin (2001) reported a decrease in utilization of dry matter, crude protein, and ether extract in laying hens kept under low ambient temperature (6.2 °C) and that supplemental chromium and vitamin C alleviated these negative values to a higher extent than control group. Sahin and Küçük (2001) reported that digestibility of nutrients increased with dietary vitamin C in Japanese quail under stress conditions.

In the present study, the magnitude of the increases or decreases in retention and excretion of nitrogen, ash and minerals was greater when a combination of ascorbic acid and chromium was supplemented than when supplemented separately. These results revealed additive effects of ascorbic acid and chromium, indicating that ascorbic acid and chromium work together or act synergistically. Similarly, Carol et al. (1994) found an interaction between Cr and vitamin C on bone and brain Mn retention and distribution in guinea pigs, and stated that dietary Cr may influence ascorbic acid metabolism via protecting ascorbate from oxidative destruction. In addition, insulin is known to play a role in ascorbic acid transportation in red blood cells, and glucose competitively inhibits ascorbic acid transport (Mann and Newton 1975). Through increasing the effectiveness of insulin, chromium indirectly promotes the ascorbic acid transportation (Seaborn et al. 1994).

Results of the present study show that supplementing ascorbic acid and chromium, particularly as a combination, improved retention of mineral and decreased excretion of nitrogen, ash, Ca, P, Zn, Fe, and Cr in laying hens. Such a combination of supplementation can offer a potential protective management practice in preventing the detrimental effects of cold stress on laying hens.

Vliv doplnění diety chrómpikolinátem a kyselinou askorbovou na exkreci dusíku a minerálních látek nosnicemi odchovávanými při nízké teplotě prostředí (7 °C)

V práci byl hodnocen účinek doplnění diety chrómem (chrómpikolinátn, CrPic) a kyselinou askorbovou (L-askorbová kyselina) na retenci dusíku (N), popelovin a minerálních látek u nosnic (linie HY) odchovávaných při nízké teplotě okolního prostředí (7 °C). Skupina 120 nosnic (štáři 32 týdnů) byla rozdělena do 4 skupin, po 30 slepicích v jedné skupině. Nosnice byly krmeny jednak základní dietou, jednak základní dietou doplněnou 400 µg Cr/kg krmiva nebo 250 mg L-askorbové kyseliny/kg krmiva a/nebo 400 µg Cr a současně 250 mg L-askorbové kyseliny/kg krmiva.

Nejvýšší retence N, popelovin, Ca, Zn, Fe a Cr byla zaznamenána u kombinace chrómu a kyselinou askorbové a nejnižší byla u kontrolní diety (P < 0.05). Podobně tomu bylo i u exkrece N, popelovin, Ca, Zn, Fe a Cr: nejnižší byla u skupin krmených s doplňkem chrómu a kyselinou askorbovou ve srovnání s kontrolní skupinou (P < 0.05). Z výsledků studie je zřejmé, že doplnění výživy kyselinou askorbovou a chrómem, zvláště v kombinaci obou, zlepšuje retenci minerálních látek a snižuje sekreci N, popelovin, Ca, Zn, Fe a Cr u nosnic. Uvedená kombinace jako krmný doplněk by mohla mít případný protektivní účinek při prevenci škodlivých následků chladového stresu u nosnic. Výsledky této studie rovněž dokládají, že chróm a vitamín C měly aditivní účinek na sledované ukazatele.

Acknowledgement

The author thanks Veterinary Control and Research Institute of Elazig, particularly Dr. Nurcan Arslan, Director, for providing the experimental facility.
References

ANDERSON, RA 1994: Stress effects on chromium nutrition of humans and farm animals. In: Lyons, TP and Jacques, KA (Eds), Biotechnology in Feed Industry, University Press, Nottingham, England, pp. 267-274

ARAD, Z, MARDER, J 1982: Comparison of the productive performances of the sinai bedouin fowl, the white leghorn and their crossbreds: Study under natural desert conditions. Brit Poultry Sci 23: 333-338

HORNIG, D, GLATTHAAR, B, MOSER, U 1984: General aspect of ascorbic acid function and metabolism In: Workshop. Ascorbic Acid in Domestic Animals. J Wegger, FJ Tagwerker, J Moustgaard (Eds.), Royal Danish Agr Soc Copenhagen, pp. 3-24

SMITH, MO, TEETER, RG 1987: Potassium balance of the 5 to 8-week old boiler exposed to constant heat or cycling high temperature stress and the effects of supplemental potassium chloride on body weight gain and feed efficiency. Poultry Sci 66: 487-492

SYKES, AH 1978: Vitamin C for poultry; some recent research. Roche Symposium, pp:5-15

THORNTON, PA 1962: The effect of environmental temperature on body temperature and oxygen uptake by the chicken. Poultry Sci 41: 1053-1058

