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Abstract

This synoptic study gives a concise overview of current knowledge of bone healing, the role of 
mesenchymal stem cells in bone tissue regeneration and contemporary possibilities of supporting 
regeneration of damaged bone. Attention of research concerning the healing of fractures with 
extensive loss of bone tissue following trauma, the treatment of belatedly healing or non-healing 
fractures or the healing of segmental bone defects following tumour resection, is focused on 
development of three-dimensional scaffolds planted with mesenchymal stem cells that might be 
used for reconstruction of such large bone lesions. Presented are possibilities of transplantation 
of mesenchymal stem cells combined with biomaterials into bone defects, including the results 
of our own experimental studies dealing with the use of stem cells in the treatment of damaged 
tissues of the musculoskeletal system in animal models.
Tissue engineering, biomaterials, scaffold, segmental bone lesion, fracture healing, growth 
factors, review

Contemporary research currently focuses on the use of mesenchymal stem cells (MSCs) 
for the purpose of regeneration of damaged tissues of the musculoskeletal system, such 
as the cartilage, bone, ligaments, muscles and tendons (Ahn et al. 2004; Arinzeh 2005; 
Arthur et al. 2009; Award et al. 2003; Chen et al. 2003; Dressler et al. 2005; Gál et 
al. 2007; Hoemann et al. 2005; Lee and Hui 2006; Plánka et al. 2007, Shirly et al. 
2005; Kraus and Kirker-Head 2006; Nečas et al. 2008; Noel et al. 2002; Waese 
et al. 2008; Zaidi and Nixon 2007). Bone tissue is capable of regeneration, yet the 
natural bone healing process is in some cases insufficient. For example, excessive loss 
of bone due to trauma or tumour resection, non-healing fractures, metabolic diseases, 
arthrodesis, vertebral fusion, insufficient healing capacity due to systemic, local disease 
or age etc., present cases where bone regeneration using transplantation of MSCs alone 
or combined with biomaterials may bring the required result of successful healing of the 
particular bone defect (Cancedda et al. 2003, Caplan 2005; Drosse et al. 2008; Jančář 
et al. 2007; Kraus and Kirker-Head 2006; Nečas et al. 2008; Salgado et al. 2006; 
Slater et al. 2008; Viateau et al. 2007). The aim of this work was to give a concise 
overview of existing knowledge from experimental studies on regeneration of bone tissue 
using methods of tissue engineering with the application of MSCs transplantation; and 
concurrently, to inform on the results of our own research studies in relation to MSCs 
transplantation into the tissues of the musculoskeletal system in animal models (miniature 
pig, New Zealand white rabbit).
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Role of MSCs in bone tissue regeneration

When bone integrity is damaged (e.g. after fracture), under normal circumstances 
MSCs play an important role in its healing. MSCs are multipotent cells of mesodermal 
origin capable of differentiating into osteoblasts, chondrocytes, adipocytes, tenocytes and 
myoblasts (Heino and Hentunen 2008; Jaswal et al. 1997; Krampera et al. 2006; Marie 
and Fromigue 2006; Pittenger et al. 1999; Smith 2006). These cells are identified as 
marrow stromal cells (supporting the cells of bone marrow), because they are relatively 
abundant in the bone marrow which is their suitable source. Apart from bone marrow, they 
are found in the endosteum of the trabecular bone, and the periosteum (Stocum 2001). 
A limited source of MSCs is the fat tissue, funicle blood, muscle and synovial membrane 
(Yoo and Johnstone 1998; Bruder et al. 1997). MSCs are found in small quantities in 
peripheral blood and other tissues (Kuznetsov et al. 2001). They have been isolated e.g. 
from the liver, brain and pancreas (Porada et al. 2006).

MSCs of the bone marrow and endosteum originate from the periosteum. During foetal 
development the calcified cartilage of endochondral bone is gradually reconstructed and 
vascularised, MSCs are transferred from the periosteum to the marrow cavity where 
MSCs are further differentiated into osteoblasts substituting bone cartilage, fibroblasts and 
adipocytes that form the supporting tissue of the bone marrow in formation. Concurrently, 
part of the MSC population in bone marrow remains unchanged and forms the source of 
undifferentiated stem cells (Stocum 2001). Bone regeneration is analogous to embryonic 
development of the skeleton. It is provided by a sum of cellular, humoral and mechanical 
factors involved in the new formation of bone in which MSCs play an important role. At the 
site of the fracture line the bone is damaged, which is accompanied by bleeding. Cytokines 
released from the damaged matrix of the bone and from degranulated thrombocytes form 
a mix of biologically active proteins, some of which affect MSCs chemotactically. MSCs 
from the periosteum and bone marrow are transferred to the location of bone damage 
where they continue to multiply and differentiate into osteoblastic, chondroblastic and 
fibroblastic lines of cells (Oe et al. 2007) responsible for the production of bone matter 
and cartilage that form a callus at the fracture site (Einhorn 1998; Carter et al. 1998). 
Recently published studies show that during bone injury, MSCs are flowed from bone 
marrow to peripheral blood. Through peripheral blood the originally distant MSCs are 
transferred to the site of bone injury where they reinforce the healing potential of local 
MSCs (Devine at al. 2002; Shirley et al. 2005). Bone morphogenic proteins (BMPs) play 
an important role during prenatal development and bone regeneration (Reddi 2000). They 
carry out the task of cytokines that fundamentally influence MSCs, as they can modify 
their differentiation (Edgar et al. 2007). Osteogenesis is the result of mutual interaction 
of individual types of BMPs, when e.g. BMP-2, -4, and -7 are responsible mainly for the 
induction of osteogenesis, whereas BMP-12, -13, and -14 are connected with cartilage 
formation (Reddi 2001; Li and Wozney 2001; Carter 2003). 

Methods of MSCs isolation are based on their ability to divide and adhere to the substrate 
or surface of the cultivation container (Caplan 1991; Stocum 2001). During cultivation 
and the passaging of cells obtained by bone marrow aspiration, MSCs may be separated 
by a change of the cultivation medium from the cells that do not possess the ability of 
adhesion and move freely in the cultivation solution (e.g. the line of haematopoietic stem 
cells, HSCs) (Stocum 2001). The results of experimental studies point out that during 
cultivation in vitro, MSCs may be directed toward transformation into lines of cells that 
are capable of producing bone matter by being exposed to the effects of a number of 
substances, such as the transforming growth factor (TGF), vascular endothelial growth 
factor (VEGF), insulin-like growth factor (IGF), dexamethasone or glycerol phosphate, 
vitamin D and bone morphogenic protein 2 (BMP-2) (Pluhar 2004; Anitua et al. 2004a; 
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Carter 2003; Anitua et al. 2004b; Marx 2004, Pittenger et al. 1999, Prockop 1997). 
Experimental studies report other properties of MSCs, such as the ability to maintain the 
possibility of division after cryopreservation (Bruder 1997) or their immunotolerance. 
Some studies suggest that MSCs lack certain receptors on their surface which allows them 
to escape the T-cell component of immunity (Pittenger et al. 1999; Devine 2002). Other 
studies even point out immunosuppressive properties of MSCs after their transplantation 
(Devine et al. 2001; Bartholomew et al. 2002; Porada et al. 2006). It is assumed that 
due to these immunological properties, allogeneic MSCs might be used in transplantations 
as effectively as autogenous MSCs (Arinzeh et al. 2003; Kraus a Kirker-Head 2006).  
A possibility has even been described of xenogeneic transplantation of MSCs for the 
purpose of bone tissue regeneration in rabbits (Bruder et al. 1998b).

Contemporary strategies of supporting bone defect healing
Regeneration of damaged bone is related to several fundamental processes: osteogenesis, 

osteoinduction, osteoconduction and osteopromotion. Efforts are made to achieve the 
most effective way of regeneration possible, using the optimum combination of these four 
processes with the application of MSC implantation (Bruder and Fox 1999; Nečas et 
al. 2008, Viateau et al. 2007; Kirker-Head et al. 2007). The best example of the use 
of the osteogenic potential of transplanted cells is the autogenous spongeous bone graft 
(Kraus and Kirker-Head 2006). The collection location in dogs and cats is crista iliaca 
or tumerculum majus humeri, in horses it is sternum and alla ossis ilii (Johnson 2007). 
The disadvantage of graft collection is the necessity of preparing another operation field, 
which increases the material cost and lengthens the surgery time. A relative disadvantage is 
also the insufficient yield of a graft in small or old individuals. In humans, graft collection 
is moreover associated with subsequent pain at the graft collection location and higher 
morbidity (Beirne et al. 1996; Silber et al. 2003; Joshi and Kostakis 2004). Autogenous 
spongeous bone graft is considered the “golden standard” among tissue transplants 
supporting bone regeneration, but not always all aspects of the application of this graft are 
ideal for clinical practice. Attention of contemporary research is therefore directed to the 
finding of an optimum substitute for the standard bone grafts used. Promising results have 
been yielded by the application of BMPs combined with materials showing osetoconductive 
properties, such as deproteinised bone, some forms of demineralised bone matrix (DBM), 
synthetic collagene, hydroxyapatite, tricalcium phosphate, hydrogel based on hyaluronic 
acid and some synthetic polymers based on polyglycolic acid or polylactate (Cook et 
al. 1994; Gao et al. 1996; Boyan et al. 1999; Yamamoto et al. 1998; Horisaka et al. 
1991; Hotz and Herr 1994). Commercial application of DNA recombinant technology 
allowed the synthesis of recombinant human bone morphogenic proteins (rh BMPs) using 
bacteria (e.g. Escherichia coli) (Vallejo et al. 2002). Production of the BMP has thus 
been substantially speeded up and facilitated, which contributed to its wider application in 
clinical practice. At present, rh BMP-2 (Genetics Institute, Boston, Massachusetts, USA) 
and rh BMP-7 Creative BioMolecules, Hopkinton, Massachusetts, USA) are commercially 
available on the U.S. market. Clinical application of rh BMPs has been described in 
humans in orthopaedic interventions (vertebral fusion, long bone defect healing, non-
healing fractures), in craniomaxillofacial surgery, and dentistry (Johnson and Urist 
1998; Boyne 2001, Friedlaender et al. 2001; Burkus et al. 2002). The application of 
BMPs has yielded positive results in supporting bone regeneration, yet their exclusively 
osteoinductive property presents a certain strategic limitation. New bone formation is 
dependent on MSCs present at the location of bone damage that represent the source of 
osteogenic lines of cells capable of forming bone matter. In this sense, the strategy of using 
the osteogenic potential of MSCs transplanted into the bone defect appears promising. 
The subject of intensive research in the field of tissue engineering is the application of 
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MSCs in combination with suitable scaffolds in order to achieve bone tissue regeneration. 
This would be a contribution for clinical practice in patients with extensive bone defects 
(tumour resection, traumatic injuries with bone loss, complicated fractures) or in cases of 
decreased healing ability of bone tissue (older age, osteoporosis) or genetic diseases of the 
skeleton (osteogenesis imperfecta) (Barry et al. 2001).

Strategies of transplantation of MSCs in combination with biomaterials
The primary aim of tissue engineering is the finding of suitable material biocompatible 

with bone tissue. For this purpose a number of osteoinductive carriers have been tested 
based on synthetic polymers, DBM, hydrogel, titanic fibres, natural coral and synthetic 
bioceramics based on hydroxyapatite and tricalcium phosphate (Bucholz et al. 1987; 
El-Ghannam 2005; Hotz and Herr 1994; Ishaug et al. 1997; Fleming et al. 2000; 
Hutmacher 2000; Oest et al. 2007; Srouji and Livne 2005; Wolff at al. 1994). 

Synthetic materials based on hydroxyapatite and tricalcium phosphate show good ability 
of incorporation into bone tissue, which is due to their biocompatibility, degradability 
and porous structure allowing their intergrowth through newly formed bone (Bruder et 
al. 1998a; Marcacci et al. 1999). Their “merely” osteoinductive property, however, is 
insufficient for the healing of extensive bone defects (Bruder at al. 1998a). In contrast, 
synthetic polymers have lower ability of osetointegration compared to bioceramics, and 
their degradation is connected with stronger tissue reaction (Fleming 2000; Oest et al. 
2007). 

Attention of contemporary research is also focused on the development of three-
dimensional (3D) scaffolds planted with MSCs that might be used for the reconstruction 
of extensive bone defects. This strategy combines the osteogenic potential of MSCs with 
osteoconductive abilities of the scaffolds (Nečas et al. 2008; Viateau et al. 2007; Ishauga 
et al. 1997; Fleming et al. 2000; Kraus and Kirker-Head 2006; Kadiyala et al. 1997; 
Jančář et al. 2007), supplemented in some cases also with the osteopromotive component 
(Neuttelman et al. 2006; Kim et al. 2007; Kirker-Head et al. 2007; Rosenbaum et al. 
2008). In experimental studies dealing with the reconstruction of large bone defects using 
3D scaffolds planted with MSCs, the model animal used was the rat (Kadiyala et al. 
1997; Bruder et al. 1998a; Srouji and Livne 2005), rabbit (Kirker-Head et al. 2007), 
dog (Kraus et al. 1999; Kraus and Kirker-Head 2006) and sheep (Marcacci et al. 
1999; Viateau et al. 2007). In several studies, bioceramics was used as the carrier (Kraus 
et al. 1999; Kraus and Kirker-Head 2006). Recently published studies focus on the 
development and transplantation of a scaffold based on fibroin (protein derived from the 
silk produced by the silkworm moth caterpillar) combined with MSCs or BMPs (Kirker-
Head 2007; Meinel et al. 2006), or a bioactive scaffold composed of collagen and peptide 
derived from osteopontin (Lee at al. 2007).

In vivo experiments on animal models yield promising results. The experimental 
work of Kadiyala et al. (1997) points out that transplantation of allogeneic MSCs on a 
hydroxyapatite/tricalcium phosphate scaffold brought about faster healing of diaphyseal 
femoral defects in rats than the application of BMPs with a similar scaffold. Similar results 
are confirmed in other studies conducted on large animal models (Kirker-Head 2006; 
Viateau et al. 2007). 

At present, we conduct in vivo studies at our department on the transplantation of MSCs 
combined with mechanically resistant, biocompatible resorbable scaffolds into segmental 
femoral defects in miniature pigs. For fixation of these segmental defects we use LCP 
plates (Locking Compression Plate, Synthes) in combination with lock screws (Plate VIII,  
Fig. 1). The healing process is continuously evaluated using radiological examination 
(Plate IX, Fig. 2) and computed tomography (Plate X, Fig. 3) as well as on the basis of 
performed mechanical tests of the firmness of operated femurs and histological examination 
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of defect locations. Preliminary results of this study with regard to better bone defect 
healing appear promising. Verification of the regenerative potential of transplanted MSCs 
under conditions in vivo on animal models is the first step before the presumed therapeutic 
application of MSCs in clinical practice. For the future, the use of the osteogenic potential 
of MSCs in combination with biomaterials is considered in the healing of bone lesions in 
humans and animals, which could substitute existing methods of bone regeneration that 
are in some cases insufficient. Owing to the possibility of long-term storage of MSCs and 
the promising results of experimental studies on allogeneic transplantation of these cells, 
it is possible even to consider the use of tissue banks that might operatively provide MSC 
cultures for clinical purposes. It will be necessary, however, to search for answers to a 
number of other questions related to supporting the healing of damaged bone tissue using 
the transplantation of stem cells combined with biomaterials.

Mezenchymové kmenové buňky v regeneraci kostní tkáně 
a jejich využití při hojení kostních defektů

V této souhrnné práci je podán stručný přehled aktuálních poznatků o hojení kosti, roli 
mezenchymových kmenových buněk v regeneraci kostní tkáně a současných možnostech 
podpory regenerace porušené kosti. Pozornost výzkumu týkajícího se hojení zlomenin 
s velkou ztrátou kostní tkáně po traumatu, léčby opožděně se hojících či nehojících se 
zlomenin, případně hojení segmentálních kostních defektů po resekcích tumorů se soustře-
dí na vývoj trojrozměrných skafoldů osazených mezenchymovými kmenovými buňkami, 
které by bylo možné využít k rekonstrukci těchto rozsáhlých kostních lézí. Uvedeny jsou 
proto možnosti transplantace mezenchymových kmenových buněk v kombinaci s bio- 
materiály do defektů kostí, včetně výsledků vlastních experimentálních studií zabývajících 
se využitím kmenových buněk v léčbě poškozených tkání muskuloskeletálního systému 
u zvířecích modelů. 
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Plate VIII
Crha M. et al.: Mesenchymal ... pp. 635-642

Fig. 1. Transplantation of biocompatible scaffold seeded with MSCs into segmental femoral 
defect fixed with LCP plate in a miniature pig



Plate IX

Fig. 2. Radiographic evaluation of the femur (caudocranial view) sixteen weeks after 
transplantation of the scaffold seeded with MSCs in the same miniature pig



Plate X

Fig. 3. Healed femoral defect on 3D computed tomography (caudocranial view) sixteen weeks 
after transplantation in the same miniature pig (LCP plate removed)


