Acta Vet. Brno 2020, 89: 79-87
Measurement of phagocyte activity in heterotherms
The heterotherm immune system undergoes significant variation in response to life cycle periodicity and torpor. As heterothermic bats are important reservoirs of zoonotic agents and modulation of immune activity can affect host-pathogen interactions, this work aimed at developing a suitable method for assessing heterotherm phagocyte activity. Chemiluminescence measurements were evaluated by mathematical and mechanistic approaches, both of which yielded comparable results in time-related parameters of phagocyte activity. Using a mathematical method, however, we developed a model that can be applied to particular specimens. The proposed equation offers a simple and reliable tool for comparing phagocyte activity, the values of which can be used for further analysis. While time-related parameters of bat phagocyte activity varied with measurement temperature, with the onset of respiratory burst at 38 °C being quicker than at 25 °C, quantitative values of phagocyte activity were not influenced by measurement temperature. Further, homeotherm phagocyte activity parameters were more variable at 25 °C. Considering there was no influence of measurement temperature on the total volume of heterotherm phagocyte activity, we suggest that parameters measured at 25 °C are more representative of the immune status adapted to physiological extremes at low body temperatures.
Keywords
Innate immunity, respiratory burst, torpor, hibernation, bat, laboratory mouse.
Funding
This study was supported by the Czech Science Foundation (Grant No. 17-20286S). We are grateful to Dr. Kevin Roche for correction and improvement of the English text.